二十道一元二次方程计算题及答案
“二十道一元二次方程计算题及答案”相关的资料有哪些?“二十道一元二次方程计算题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二十道一元二次方程计算题及答案”相关范文大全或资料大全,欢迎大家分享。
一元二次方程计算题及答案120道
优质解析
6X2-7X+1=0
6X2-7X=-1
X2-﹙7/6﹚X+﹙7/12﹚2=-1/6﹢﹙7/12﹚2
﹙ X-7/12﹚2=25/144
∴X-7/12=±5/12
∴X1=1,X2=1/6
5X2-18=9X
5X2-9X=18
X2-1.8X=3.6
﹙ X-0.9﹚2=4.41
∴X-.9=±2.1
∴X1=3,X2=-1.2
4X2-3X=52
解:X2-﹙3/4﹚X=13
﹙ X-3/8﹚2=13
∴X-3/8=±29/8
∴X1=4,X2 =-13/4
5X2=4-2X
5X2+2X=4
X2+0.2X=0.8
﹙X+0.1﹚2 =0.81
X+0.1=±0.9
X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多 1)x^2-9x+8=0 答案:x1=8 x 2=1
(2)x^2+6x-27=0 答案:x1=3 x2=-9
(3)x^2-2x-80=0 答案:x1=-8 x2=10
(4)x^2+10x-200=0 答案:x1=-20 x2=10
(5)x^2-20x+96=0 答案:x1=12 x2=8
(6)x^2+23x+76=0 答案:x1=-19 x2=-4
(7)x^2-25x+154=0 答案:x1=14 x2=11
(8)x^2-12x-108=0 答案
一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习
1、(x?4)2?5(x?4) 2、(x?1)2?4x 3、(x?3)2?(1?2x)2
4、2x2?10x?3
7、x2 =64
10、3x(x+2)=5(x+2)
5、(x+5)2=16 6、2(2x-1)-x(1-2x)=0 8、5x2 - 25=0 9、8(3 -x)2 –72=0 11、(1-3y)2+2(3y-1)=0 12、x2+ 2x + 3=0 13、x+ 6x-5=0 14、x-4x+ 3=0 15、x-2x-1 =0
16、2x+3x+1=0 17、3x+2x-1 =0 18、5x-3x+2 =0
19、7x-4x-3 =0 20、 -x-x+12 =0 21、x-6x+9 =0
一元二次方程教案
学大教育个性化辅导教案
等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. (3)配方法: 例 3
x2 6 x 4 0
解:x 2 6 x 4 x 2 6 x 32 4 32 ( x 3) 2 5 x 3 5 x1 5 3, x2 5 3.就是把一元二次方程转化为可以直接直接开平方的方法。 教师提问三:那同学们又能说说步骤吗? 用配方法解一元二次方程
ax 2 bx c 0 a 0
的一般步骤是: ①化二次项系数为 1, 即方程两边同时除以二次
项系数;②移项,使方程左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的 平方;④化原方程为 ( x m) n 的形式;⑤如果 n 0 ,就可以用直接开平方求出方程的解,如果 n<0,则原方2
程无解. (4)公式法:把一元二次方程化成一般形式,然后公式计算。 一元二次方程 ax bx c 0(a 0) 的求根公式是:2
x
b b 2 4ac 2 (b 4ac 0). 2a
例4 解:
x2 x
一元二次方程复习
用于期末复习
杨家中学2010-2011年度九年级上之一元二次方程复习
一、选择题 1.(2010江苏苏州)下列四个说法中,正确的是 A
.一元二次方程x2 4x 5
2有实数根;
B
.一元二次方程x2 4x 5 2 C
.一元二次方程x2 4x 5 3
有实数根;
D.一元二次方程x2+4x+5=a(a≥1)有实数根.
3.(2010安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 4.
5.(10湖南益阳)一元二次方程ax2
bx c 0(a 0)有两个不相等...
的实数根,则b2
4ac满足的条件是
A.b2 4ac=0 B.b2 4ac>0 C.b2 4ac<0 D.b2 4ac≥0
6.(2010山东日照)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是
(A)-3,2 (B)3,-2 (C)2,-3 (D)2,3 7.(2010四川眉山)已知方程x2 5x 2 0的两个解分别为x1、x
八年级一元二次方程二次根式计算题
一元二次方程计算题
1、x—2x—1=0. 2、2
3、x2
+x-
+1=0. 4
5、 用配方法解方程: 6
7.. 8
9、:(x -1)2
+ 2x (x - 1) = 0 10
11、用配方法解方程:。
13、x2
-6x+1=0. 14、
、3 ( x - 5 )2
= 2 ( 5- x )
、
、.
、.
、用配方法解一元二次方程:
12二次根式计算
38?232?50 (93?712?548 (3?1)2
340?25?2110
4(3?7)0?12?8?(1?2)2
(?1)2006?(3?2)0?(12)?1
(?3)?2?8?1?22?(6?3)0
18?1212?612?40.75
(7?43)(2?3)2
一元二次方程的解法
一元二次方程的解法 一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x
一元二次方程总复习
十一)、几何类题 (2)动态几何问题
图2
图3 B
Q
CP
图4 http://www.77cn.com.cn
例:如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C
点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
解:因为∠C=90°,所以AB=10(cm).
(1)设xs后,可使△PCQ的面积为8cm2,所以 AP=xcm,PC=(6-x)cm,CQ=2xcm. 则根据题意,得
1
·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4. 2
所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2. (2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半. 则根据题意,得
2
111(6-x)·2x=××6×8.整理,得x2-6x+12=0. 222
-6 4 1
函数---一元二次方程(含答案)
二次函数与一元二次方程的综合
函数与一元二次方程
知识考点:
1、理解二次函数与一元二次方程之间的关系;
2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况;
3、会利用韦达定理解决有关二次函数的问题。 跟踪训练: 一、选择题:
1、已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧,它们的距离的平方等于25
49,则m 的值
为( )
A 、-2
B 、12
C 、24
D 、-2或24
2、已知二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图像交于点A (-2,4),B (8,2),如图所示,则能使21y y >成立的x 的取值范围是( )
A 、2-<x
B 、8>x
C 、82<<-x
D 、2-<x 或8>x
第2题图
第4题图
3、如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A 、B 、E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系:①0=+c a ;②0=b ;③1-=ac ;④2c S ABE =?其中正确的有( ) A 、4个 B 、
一元二次方程教材分析
一元二次方程教材分析
新墩中心学校
一.本章内容分析
本章主要介绍了一元二次方程及有关概念,一元二次方程的解法,运用一元二次方程分析和解决实际问题。其中解一元二次方程的基本思路和具体解法是本章的重点内容。
方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备.
数学建模思想的教学在本章得到进一步渗透和巩固. 二.课时安排: 2.1 花边有多宽 2课时
2.2 配方法 3课时 2.3 公式法 2课时 2.4 分解因式法 2课时 2.5 为什么是0.618 2课时 回顾与思考 2课时 三、本章知识结构图 四.单元内容分析
2.1 花边有多宽
本小节分两课时,以实际问题为背景,引出一元二次方程的概念,归纳出
一元二次方程的一般形式,给出一元二次方程根的概念。
⒈教学目标:(1)通过实际问题了解一元二次方程的定义及一般形式;
(2)会将一个整式方程化为一元二次方程的一般形式,并能指
出二次项及二次项系数、一次项及一次项系数和常数项。
教学重点:一元二次方程及有关概念的理解.
教学难点:准
一元二次方程经典例题
一元二次方程应用题经典题型汇总
一 几何图形转换问题
例1、(2013?昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )
2
A. 100×80﹣100x﹣80x=7644 C. (100﹣x)(80﹣x)=7644
考由实际问题抽象出一元二次方程. 点: 专几何图形问题. 题: 分把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方析: 形,根据长方形的面积公式列方程. 解解:设道路的宽应为x米,由题意有 答: (100﹣x)(80﹣x)=7644, 故选C. 点此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移评: 到矩形地面的最上边和最左边是做本题的关键. B. (100﹣x)(80﹣x)+x=7644 D. 100x+80x=356 2练习: 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)
(1)设计方案1(如图2)花园是两个互相垂直且宽度相等的矩形. (2)设计方案2(如图3)花园