切线证明的常用方法

“切线证明的常用方法”相关的资料有哪些?“切线证明的常用方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“切线证明的常用方法”相关范文大全或资料大全,欢迎大家分享。

圆切线证明的方法

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

切线证明法

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.

【例1】如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30o.求证:DC是⊙O的切线.

【例2】如图2,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接OC,弦AD∥OC.求证:CD是⊙O的切线.

【例3】如图2,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.

【例4】 如图1,B、C是⊙O上的点,线段AB经过圆心O,连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是⊙O的切线吗?为什么?

A D A O B C D A O 图1 C B D C B O 图3 【例5】 如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.

【例6】 如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.

【例9】如图,AB=AC,AB是⊙O的直径,⊙O交B

中考复习专题——切线的证明方法

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

切线的证法

1. 直线与圆只有唯一公共点,则直线是圆的切线

2. 圆心到直线的距离等于圆的半径,则直线是圆的切线 3. 经过半径的外端,且垂直于这条半径的直线是圆的切线 一. 角平分线证相切:(作弦心距,利用勾股定理)

例:.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.

(1)求证:DE是⊙O的切线; (2)若

AC3AF

=,求的值。 AB5DF

练习2.如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F。 (1)求证:EF为⊙O的切线; (2)若sin∠ABC=

4

,CF=1,求⊙O的半径及EF的长。 5

3. 如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.

(1)求证:DE是⊙O的切线;

F(2)若DE=3,⊙O的半径为5,求BF的长.

B

4.已知如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC

于点G,交AB于点F,FB恰为⊙O的直径. (1) 求证:AE与⊙O相切; (2)

切线证明

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第1篇:证明切线的方法

证明切线的方法

证明一条直线是圆的切线,可分两种情况进行分析。

(1)圆和直线的唯一公共点已知,方法是:连半

径,证垂直(比较常用)。

(2)圆和直线的公共点位置未知,方法是:作垂

直,证半径。

例如图,△ABC是等腰三角形,AB=AC,点O

在线段AB上,以O为圆心、OB为半径作圆交BC于点D,过点D作DE⊥AC于E。DE是圆O的切线吗?

分析:这属于第一种情况,可以考虑连半径,再证垂直。

DE是切线。

证明:连接OD。

∵△ABC是等腰三角形,AB=AC,

∴∠B=∠C。

又∵OB=OD,

∴∠B=∠1。

∴∠1=∠C。

而DE⊥AC,

∴∠C+∠2=90°。

∴∠1+∠2=90°。

∴∠ODE=90°,即OD⊥DE,OD是圆O的半径。

∴DE是圆O的切线。

AB

第2篇:证明圆的切线方法

证明圆的切线方法

我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有:

一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延

线面平行证明的常用方法

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

线面平行证明的常用方法 张磊

立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:

方法一:中位线型:找平行线。

例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点.求证:PB//平面AEC

方法二:构造平行四边形,找平行线

AE//平面DCF.

分析:过点E作EG//AD交FC于G, DG就是平面AEGD

与平面DCF的交线,那么只要证明AE//DG即可。

例2、如图⑵, 平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证:

方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已

知平面平行的平面

例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形, M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD

分析::取OB中点E,连接ME,NE,只需证平面MEN平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。

例4、已知正方形ABCD和正方形ABEFAC和BF上,且AM=FN. 求证:MN‖平面BCE.

如图⑷

线面平行证明的常用方法

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

线面平行证明的常用方法 张磊

立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:

方法一:中位线型:找平行线。

例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点.求证:PB//平面AEC

方法二:构造平行四边形,找平行线

AE//平面DCF.

分析:过点E作EG//AD交FC于G, DG就是平面AEGD

与平面DCF的交线,那么只要证明AE//DG即可。

例2、如图⑵, 平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证:

方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已

知平面平行的平面

例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形, M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD

分析::取OB中点E,连接ME,NE,只需证平面MEN平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。

例4、已知正方形ABCD和正方形ABEFAC和BF上,且AM=FN. 求证:MN‖平面BCE.

如图⑷

切线的证明题型归纳

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

学习资料收集于网络,仅供参考

学习资料

切线的证明方法和归纳:

1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直.简记为:有交点,连半径,证垂直.

(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段,再证垂线段长等于半径长.简记为:

学习资料收集于网络,仅供参考

学习资料无交点,作垂直,证半径.

如图,已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。

求证:⊙O与AC相切。

学习资料收集于网络,仅供参考

有交点,连半径,证垂直.

例1 如图,已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。求证:直线AB是⊙O的切线。

如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.

(1)求证:DE是⊙O的切线;

学习资料

学习资料收集于网络,仅供参考

学习资料

已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.求证:DC是⊙O的切线.

学习资料收集于网络,仅供参考

学习资料

相关题型

如图,在Rt△ABC中,已知∠ACB=90°,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边交于点D,连接C

中考数学专题突破:证明圆的切线

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

中考数学专题突破:证明圆的切线

方法一:等角代换(☆☆☆☆☆) 方法二:利用平行线的性质(☆☆) 方法三:证明三角形全等或相似(☆) 方法四:算出角度 方法五:勾股定理

方法一:等角代换(找到与90度相等的角)

【2017山东潍坊22】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA. (1)求证:EF为半圆O的切线;

【解析】(1)证明:连接OD, ∵D为

的中点,∴∠CAD=∠BAD,

∵OA=OD,∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∵DE⊥AC,∴∠E=90°,

∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD⊥EF,∴EF为半圆O的切线;

【2017山东德州20】如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC

为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;

【解析】(1)证明:

连接OE、EC,

∵AC是⊙O的直径,∴∠AEC=∠BEC=90°, ∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2, ∵OE=OC,∴∠3=∠4,

∴∠1+∠3=∠2+∠4,即∠OED=∠ACB, ∵∠ACB=90°,∴∠OED=90

圆锥曲线的切线方程总结(附证明)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

运用联想探究圆锥曲线的切线方程

现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆x2?y2?r2上一点M(x0,y0)的切线方程为x0x?y0y?r2;当M(x0,y0)在圆外时,过M点引切线有且只有两条,过两切点的弦所在直线方程为x0x?y0y?r2。那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。

联想一:(1)过椭圆x0xa2xa22?yb22?1(a?b?0)上一点M(x0,y0)切线方程为

xa22?y0yb2(2)当M(x0,y0)在椭圆?1;

x0xa2?yb22过M引切线有两条,?1的外部时,

过两切点的弦所在直线方程为:

xa22?y0yb2?1

2xa2证明:(1)?yb22?1的两边对x求导,得?2yy?b2?0,得y?x?x0??bx0ay022,由

点斜式得切线方程为y?y0??xa22bx0ay022(x?x0),即

x0xa2?y0yb2?x0a22?y0b22?1 。

(2)设过椭圆?yb22?1(a?b?0)外一点M(x0,y0)引两条切线,切点分别

xxyy为A(x1,y1)、B(x2,y2)。由(1)可知过A、B两点的切线方程分别为:12?12?1、

abx1x0y1y0x2xy2yM(x,y)。又

浅谈中学几种常用证明不等式的方法

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

江西科技师范大学

毕业论文

题 目:浅谈中学几种常用证明不等式的方法

(外文):On the method commonly used in

Middle School to prove inequality

院(系): 数学与计算机科学学院 专 业: 数学与应用数学 学生姓名: 吴丹 学 号: 20091741 指导教师: 樊陈

2013年3月20日

目录

1引言 ................................................................................................................................................. 1 2放缩法证明不等式...........................................................................................

2014.12.26中考圆的切线证明题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

2014.12.26圆的切线证明

1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.

求证:EF与⊙O相切.

(2011中考)2.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E,(1)求证:PB为⊙O的切线;(2)若tan∠ABE=

3 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.

求证:PA与⊙O相切.

1

E4 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M

求证:DM与⊙O相切.

D

5 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上. 求证:DC是⊙O的切线

CP

1,求sin∠E. 2OB

6 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线.

7 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.

求证:CE与△CFG的外接圆相切.

A8. (2006北京中考)已知:如图,△ABC