高一数学第四章指数函数与对数函数

“高一数学第四章指数函数与对数函数”相关的资料有哪些?“高一数学第四章指数函数与对数函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高一数学第四章指数函数与对数函数”相关范文大全或资料大全,欢迎大家分享。

6 第四章 指数函数与对数函数 章末复习提升课

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

章末复习提升课

主题1 指数与对数的运算

求下列各式的值:

(1)? ??

??827-23-3e ·e 23+(2-e )2+10lg 2; (2)lg 25+lg 2×lg 500-12lg 125-log 29×log 32. 【解】 (1)? ??

??827-23-3e ·e 23+(2-e )2+10lg 2

=????

??? ????233-23-e 13·e 23+(e -2)+2 =? ????23-2-e +e -2+2=? ??

??322=94. (2)lg 25+lg 2×lg 500-12lg 125-log 29×log 32 =lg 25+lg 2×lg 5+2lg 2-lg 15-log 39

=lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2

=lg 5+lg 2-1=1-1=0.

指数与对数的运算应遵循的原则

(1)指数的运算:注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算.另外,若出现分式,则要注意对分子、分母因式分解以达到约分的目的;

(2)对数的运算:注意公式应用过程中范围的变化,前后要等价,一般本着真数化简的原则进

高一数学测试题指数函数与对数函数(9)

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

一、选择题:

1、设f(x)满足f(x)=f(4-x),且当x>2 时f(x)是增函数,则 a=f(1.10.9),b = f(0.91.1),c

=f(log14)的大小关系

2

( )

D.c>b>a

( )

C.1或4 D.4 或

( )

D.3

A.a>b>c B.b>a>c C.a>c>b 2、已知2lg(x-2y)=lgx+lgy,则x的值为

y A.1

B.4

3、方程loga (x+1)+ x2=2 (0<a<1)的解的个数为

A.0 B.1 C.2 4、函数f(x)与g(x)=(

1x

)的图象关于直线y=x对称,则f(4-x2)的单调递增区间是 ( ) 2

B. ,0

C. 0,2

D. 2,0

( )

A. 0,

2

5、已知函数y=log1 (ax2+2x+1)的值域为R,则实数a的取值范围是 A.a > 1

B.0≤a< 1

2

C.0<a<1 D.0≤a≤1

2

6、设x≥0,y≥0,且x+2y=1 ,那么函数 u=log1 (8x

高一数学_指数函数、对数函数、幂函数练习(含答案)

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

分数指数幂

1、用根式的形式表示下列各式(a 0) 1(1)a5

(2)a

32

2、用分数指数幂的形式表示下列各式: 2(1)x4

y3

(2)mm

(m 0)

3、求下列各式的值

3

3(1)252

(2)2

25

4

4、解下列方程 3

(1)x 13 1

8

(2)2x4 1 15

分数指数幂(第

9份)答案

1

33

2、x2

y2, m2

3、(1)125 (2)

8125

4、(1)512 (2)16

指数函数(第

10份)

1、下列函数是指数函数的是( 填序号) (1)y 4x

(2)y x4

(3)y ( 4)x

(4)y 4x2

。 2、函数y a

2x 1(a 0,a 1)的图象必过定点 。

3、若指数函数y (2a 1)x

在R上是增函数,求实数a的取值范围。4、如果指数函数f(x) (a 1)x

是R上的单调减函数,那么a取值范围是 (A、a 2 B、a 2 C、1 a 2 D、0 a 1

5、下列关系中,正确的是

高一数学《指数函数与对数函数》测试题及答案

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

1 指数函数与对数函数检测题

一、选择题:

1、已知(10)x f x =,则(5)f =( )

A 、510

B 、10

5 C 、lg10 D 、lg 5

2、对于0,1a a >≠,下列说法中,正确的是( )

①若M N =则log log a a M N =; ②若log log a a M N =则M N =;

③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、②

3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )

A 、?

B 、T

C 、S

D 、有限集

4、函数22log (1)y x x =+≥的值域为( )

A 、()2,+∞

B 、(),2-∞

C 、[)2,+∞

D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -??=== ???,则( )

A 、312y y y >>

B 、213y y y >>

C 、132y y y >>

D 、123y y y >>

6、在(2)log (5)a b

指数函数与对数函数的关系

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

§3.2.3 指数函数与对数函数的关系课前预习案

一、认真阅读课本,填写以下内容: 1.反函数的定义:

当一个函数是 时,可以把这个函数的因变量作为一个新的函数的 ,而把这个函数的自变量作为新的函数的 ,我们称这两个函数互为 .

2.对数函数y?logax与 互为反函数,它们的图象关于直线 对称.

3.函数f(x)的反函数通常用 表示. 二、预习自测:

1. 求下列函数的反函数(不必写定义域).

(1)y?ex; (2)y?lgx; (3)y?log2(x?1).

2.函数f(x)?log2x?2,则f?1(x)的定义域是( )

A.R B.[?2,??) C. [1,??) D.(0,1) 3.函数f(x)?log2(x?1)?1,则f?1(1)等于( )

A. 1 B. 2 C. 3

指数函数与对数函数复习课

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

指数函数与对数函数复习课

指数函数与对数函数复习课

复习目标:

1.整理指数函数和对数函数的概念,图象和性质

2.能够运用指数函数和对数函数的性质解决一些简单问题自主复习

请在下面空白地方填写自己整理的指数函数和对数函数的知识点和题型

知识归纳

1.概念

________________________________________叫做指数函数。

_____________________________________对数,记作_____________,其中a叫做对数的________,N叫做___________。

______________________________叫做常用对数,记为__________。

______________________________叫做自然对数,记为__________,e=________。 ________________________________________叫做对数函数。

指数函数与对数函数复习课

①ax N x logaN(a 0,a 1) 指数运算与对数运算互为逆运算

②指数函数y ax(a 0,a 1)与对数函数y logax(a 0,a 1)互为反函数,它们的图象关于直线y=x对称

题型讲解

指数函数、对数函数、换底公式

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

指数函数和对数函数·换底公式·例题

例1-6-38 log34·log48为

[ ]

·

log8m=log416

m

解 B 由已知有

[ ]

A.b>a>1 B.1>a>b>0 C.a>b>1 D.1>b>a>0 解 A 由已知不等式得

故选A.

[ ]

http://www.77cn.com.cn/

故选A.

[ ]

A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,

2)

2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数,

http://www.77cn.com.cn/

[ ]

A.m>p>n>q B.n>p>m>q C.m>n>p>q D.m>q>p>

n

例1-6-43 (1)若logac+logbc=0(c≠0),则ab+c-abc=____; (2)log89=a,log35=b,则log102=____(用a,b表示).

但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1.

例1-6-44 函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是___

指数函数、对数函数图像交点问题

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

指数函数、对数函数图像交点问题

反函数是函数中一个重要的概念,它是从研究两个函数关系的角度产生的,函数的反函数,本身也是一个函数。在实际教学过程中,我们除了从定义的角度把反函数讲解清晰之外,譬如:从映射的角度可知,函数y=f(x)是定义域集合A到值域C的映射,它的反函数y=f-1(x)是集合C到集合A的映射,再结合函数的定义可知,只有一一映射的函数才存在反函数。我们还应该把握从抽象到直观,再从直观到抽象相结合的传授知识的基本原则,给学生的一个形象、直观的认识。正是基于这个原因,中学数学教材中引进了作为一种重要的函数和互为反函数的典型例子的指数函数、对数函数。

一、分析反函数的定义可知,原函数与反函数图像如果有交点,它们必然关于y=x对称;若原函数与直线y=x有交点,则反函数图像也必与y=x相交且交点重合。

为了验证上面的结论,我分别给了学生以下几个例子 (1)函数y(1,1),且在y=x?2x?1与它的反函数y?12x?12图像只有一个交点

上。

1(2)函数

y?x3与它的反函数

y?x3的图像有三个交点

(?1,?1)、(0,0)、(1,1),且都在y=x上。

(3)函数y?1x的反函数是它自身,故反比例函数与它的反函数

图像有无数个交点,其中有两

指数函数、对数函数、幂函数综合(基础)

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

让更多的孩子得到更好的教育

指数函数、对数函数、幂函数综合 A

一、目标与策略

明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!

学习目标:

1.理解有理指数幂的含义,掌握幂的运算.

2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点。 3.理解对数的概念及其运算性质。

4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.

5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数y?ax与对数函数y?logax互为反函数(a>0,a≠1).

学习策略:

?

深刻理解指数函数、对数函数、幂函数的图象与性质,对数与形的基本关系能相互转化.在这一章中,数形结合的思想比比皆是,深刻理解和灵活运用这一思想方法,不仅会给解题带来方便,而且这正是充分把握住了中学数学的精髓和灵魂的体现.

二、学习与应用

“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上

第四讲 对数函数与指数函数经典难题复习巩固

标签:文库时间:2024-09-30
【bwwdw.com - 博文网】

DSE金牌化学专题系列 精典专题系列第4讲 指数函数与对数函数 一、导入:名叫抛弃的水池 一个人得了难治之症,终日为疾病所苦。为了能早日痊愈,他看过了不少医生,都不见效果。他又听人说远处有一个小镇,镇上有一种包治百病的水,于是就急急忙忙赶过去,跳到水里去洗澡。但洗过澡后,他的病不但没好,反而加重了。这使他更加困苦不堪。 有一天晚上,他在梦里梦见一个精灵向他走来,很关切地询问他:“所有的方法你都试过了吗?” 他答道:“试过了。” “不,”精灵摇头说,“过来,我带你去洗一种你从来没有洗过的澡。” 精灵将这个人带到一个清澈的水池边对他说:“进水里泡一泡,你很快就会康复。”说完,就不见了。 这病人跳进了水池,泡在水中。等他从水中出来时,所有的病痛竟然真地消失了。他欣喜若狂,猛地一抬头,发现水池旁的墙上写着“抛弃”两个字。 这时他也醒了,梦中的情景让他猛然醒悟:原来自己一直以来任意放纵,受害已深。于是他就此发誓,要戒除一切恶习。他履行自己的誓言,先是苦恼从他的心中消失,没过多久,他的身体也康复了。 大道理:抛弃是治疗百病的万灵之药,人之所以有很多难缠的情感,就是因为在大多数情况下,舍不得放弃。把消极扔掉,让积极代替,就没有什么可抱