SPSS方差分析报告
“SPSS方差分析报告”相关的资料有哪些?“SPSS方差分析报告”相关的范文有哪些?怎么写?下面是小编为您精心整理的“SPSS方差分析报告”相关范文大全或资料大全,欢迎大家分享。
SPSS - 方差分析
第6章 方差分析
6.1实验目的
在现实生活中,影响具体某个事物的因素往往很多,我们常常需要正确确定哪些因素的影响是显著的,方差分析(简称为ANOVA)就是解决这一问题的有效方法。由于方差分析在统计分析工作中,是不可或缺的关键性的一个环节,因此掌握方差分析的原理及方法使非常必要的。本实验的目的在于利用方差分析(简称为ANOVA)来进行相关的假设检验和统计决策。具体有以下三个方面:
1.帮助学生深入了解理解方差及方差分析的基本概念,掌握方差分析的基本思想和原理。理解总离差(SST)、组间平方和(SSR)、组内平方和或残差平方和(SSE)、组间均方差(MSR)、组内均方差(MSE)、自由度、F统计量等基本概念及其相互关系。
2.掌握方差分析的过程:One-Way过程:单因素简单方差分析过程。在Compare Means菜单项中,可以进行单因素方差分析、均值多重比较和相对比较;General Linear Model(简称GLM)过程:GLM过程由Analyze菜单直接调用。这些过程可以完成简单的多因素方差分析和协方差分析,不但可以分析各因素的主效应,还可以分析各因素间的交互效应。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练
SPSS方差分析作业
统计作业(3)
1、
抽查某地区三所小学五年级男学生的身高,数据见文件:“男生身高”。设各小学五年级男学生的身高服从同方差的正态分布。问该地区三所小学五年级男学生的平均身高是否有显著差异(α=0.05)?
解: Test of Homogeneity of Variances 身高 Levene Statistic 5.243 df1 2 df2 15 Sig. .019 ANOVA 身高 Between Groups Within Groups Total Sum of Squares 465.881 799.255 1265.136 df 2 15 17 Mean Square 232.941 53.284 F 4.372 Sig. .032 因为sig=0.019<0.05,所以所用样本的方差不相等。所以选择Tamhane 又因为P=0.032<0.05,所以三所小学五年级男学生的平均身高有显著差异。
Multiple Comparisons 身高 Tamhane (I) 001 1 (J) 001 2 3 2 1 3 3 1 2 (I-J) -10.8500 -10.7333 10.8500 .1167 10.7333 -.1167 ** 95% Confidence Interval VAR00VAR00Mean Difference
多元方差分析spss实例
spss操作+详细解释
多元方差分析
1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。从支持三位候选人的选民中分别
分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析
具体操作(spss)
1、 打开spss,录入数据,定义变量和相应的值在此不作详述。结果如图1
spss操作+详细解释
图1 被投票人:1、布什 2、佩罗特 3、克林顿
2、 在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受
教育程度移入因变量框中,被投票人移入固定因子框中。如图2
图2 多变量分析主界面
3、 点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐
性分析),其它使用默认即可,点击继续返回主界面。如图
3
spss操作+详细解释
图3 选项子对话框
4、 点击确定,运行多变量分析过程。
结果解释
1、 协方差矩阵等同性的Box检验结果,如图4
图4 协方差矩阵检验
结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组
多元方差分析spss实例
多元方差分析
1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。从支持三位候选人的选民中分别抽取20人,登记他们的年龄段(X1)和受教育程度(X2)资料如下表所示: X1 X2 X1 X2 投票人 投票人 布什 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 投票人 克林顿 1 2 1 3 1 3 3 1 2 2 3 1 4 4 3 3 2 2 3 1 1 1 3 3 3 1 1 1 3 1 1 1 1 0 4 3 2 2 3 1 1 佩罗特 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 投票人 11 2 1 1 1 3 2 1 1 4 3 2 1 2 1 2 3 1 3 4 2 1 2 0 3 1 1 1 3 1 3 1 3 1 1 1 1 1 1 3 1 X1 4 X2 1 X1 3 X2 4 1 2 3 2 12 2 1 4 0 3 13 4 1 2 1 4 14 2 1 4 1 5 15 4 3 2 2 6 16 3 0 3 3 7 17 4 2 3 2 8 18 2 0 3 1 9 19 3
利用SPSS做方差分析教程
。
利用SPSS做方差分析教程
在分享了SPSS安装包后,除了问我SPSS怎么安装的外,还有人问怎么做方差分析的。其实大家如果林业应用统计理论部分还记得的话,是可以用Excel来做方差分析的,不过稍显繁琐一点。当然,既然部分人已经装好了SPSS,而且SPSS做方差分析有具有很大的方便性,今天我就分享一下如何利用SPSS做方差分析。
方差分析可分为单变量单因素、单变量多因素和多变量多因素方差分析三种,单变量单因素在林业应用统计书中第228页有详细介绍,相对简单,在这里不做重复,需要的同学可自行查阅。不过,操作方法都大同小异,只在输入数据和选项上有所不同。
在这里不对方差分析的理论部分进行介绍,一句话来说,方差分析是用来比较不同处理之间是否存在显著性差异的。在我看来,大家的试验类型还是以单变量多因素为主的,如果分不清变量与因素,可以再去看书,也不再展开了。
下面我以书中第172页例三为例,
spss 多因素方差分析例子
作业8:多因素方差分析
1, data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八
种草之间有无差异?具体怎么差异的? 打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:
把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:
选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,
结果输出:
因无法计算???? ??rror,即无法分开???? intercept 和???? error,无法检测interaction的影响,无法进行方差分析,
重新Analyze->General Linear Model->Univariate打开:
选择好Dependent Variable和Fixed Factor(s),点击Model打开:
点击Cust
spss作业一 酸奶口味 方差分析
作业一
1. 这10种酸奶口味均值是否存在差异? 10种酸奶口味均值存在差异:
由描述性统计量表,可见试制品1平均口味最高6.75.而平均口味最低的伊*的均值为5.6。其他各种口味的酸奶的口味均值在这两者之间波动,但是没有完全相同的 ,可见不同的品牌的酸奶在消费者吃起来口味是不同的,与城市的差异无关。
Levene's误差齐次检验表中F=1.818 sig.=0.002<0.05 拒绝各组方差相同的假设,说明各组因变量的标准差存在差异是由于一些必然的因素引起的。不是偶然的
根据Spread-versus-level (分布-水平图)可以看到散点图没有明显的变化趋势,没有迹象表明各组因变量均值与标准差之间存在关系
2. 4个不同城市消费者对10种酸奶口味评分是否存在差异? Levene's误差齐次检验表中F=1.818 sig.=0.002<0.05 拒绝各组方差相同的假设,说明各组因变量的标准差存在差异是由于一些必然的因素引起的。4个不同城市消费者对10种酸奶口味评分存在差异
3. 在酸奶评价中,品牌和城市是否存在交互作用?
由轮廓图可以明显的看到各条折线之间存在很多交叉,表明这两个因素之间存在着交互作用 4. 试制品的口味评分和其它8种品牌酸奶是否存在差异,能否选出最优的一种。
Descriptive Statistics
Dependent Variable:口感评分 城市 上海
样品品牌 世* 伊*
Mean
5.98 5.63 6.78 5.89 6.19 5.73 6.71
spss作业一 酸奶口味 方差分析
作业一
1. 这10种酸奶口味均值是否存在差异? 10种酸奶口味均值存在差异:
由描述性统计量表,可见试制品1平均口味最高6.75.而平均口味最低的伊*的均值为5.6。其他各种口味的酸奶的口味均值在这两者之间波动,但是没有完全相同的 ,可见不同的品牌的酸奶在消费者吃起来口味是不同的,与城市的差异无关。
Levene's误差齐次检验表中F=1.818 sig.=0.002<0.05 拒绝各组方差相同的假设,说明各组因变量的标准差存在差异是由于一些必然的因素引起的。不是偶然的
根据Spread-versus-level (分布-水平图)可以看到散点图没有明显的变化趋势,没有迹象表明各组因变量均值与标准差之间存在关系
2. 4个不同城市消费者对10种酸奶口味评分是否存在差异? Levene's误差齐次检验表中F=1.818 sig.=0.002<0.05 拒绝各组方差相同的假设,说明各组因变量的标准差存在差异是由于一些必然的因素引起的。4个不同城市消费者对10种酸奶口味评分存在差异
3. 在酸奶评价中,品牌和城市是否存在交互作用?
由轮廓图可以明显的看到各条折线之间存在很多交叉,表明这两个因素之间存在着交互作用 4. 试制品的口味评分和其它8种品牌酸奶是否存在差异,能否选出最优的一种。
Descriptive Statistics
Dependent Variable:口感评分 城市 上海
样品品牌 世* 伊*
Mean
5.98 5.63 6.78 5.89 6.19 5.73 6.71
SPSS中的单因素方差分析
SPSS中的单因素方差分析
一、基本原理 单因素方差分析也即一维方差分析,是检验由单一因素影响的多 组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差 异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不 同水平会影响到因变量的取值。
二、实验工具 SPSS for Windows 三、试验方法 例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产 了四批灯泡。在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单 位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产 的灯泡,其使用寿命有无显著差异。
灯泡 灯丝 1 2 3 4 5 6 7 8 甲 1600 1610 1650 1680 1700 1700 1780 乙 1500 1640 1400 1700 1750 丙 1640 1550 1600 1620 1640 1600 1740 1800 丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤 (1)在数据窗建立数据文件,定义两个变量并输入数据,这两 个变量是:
filament 变量,数值型,取值1、2、3、4 分别代表甲、乙、丙、 丁,格式为F1.0,标签为“
spss方差分析操作示范-步骤-例子
第五节 方差分析的SPSS操作
一、完全随机设计的单因素方差分析 1.数据
采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):
图 6-3 单因素方差分析数据输入 将上述数据文件保存为“6-6-1.sav”。 2.理论分析
要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程 (1)主效应的检验
假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。 ①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Depend