逻辑推理小学奥数
“逻辑推理小学奥数”相关的资料有哪些?“逻辑推理小学奥数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“逻辑推理小学奥数”相关范文大全或资料大全,欢迎大家分享。
四年级奥数 逻辑推理 复杂逻辑推理(A级)
复杂逻辑推理
知识框架
逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。本讲我们主要从各个角度总结逻辑推理的解题方法。
一、 列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.
二、 假设推理
用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立. 解题突破口:找题目所给的矛盾点进行假设
三、 体育比赛中的数学
对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、 计算中的逻辑推理
小学四年级奥数— - 逻辑推理
小学四年级数学 逻辑推理 (例题详解)
例1 对某班同学进行了调查,知道如下情况: ①有哥哥的人没有姐姐; ②没有哥哥的人有弟弟; ③有弟弟的人有妹妹。 试问:
(1)有姐姐的人一定没有哥哥,对吗? (2)有弟弟的人一定没有哥哥,对吗? (3)没有哥哥的人一定有妹妹,对吗? 解答:根据条件①得到(1)是对的;
“有弟弟且有哥哥”并不与①②③矛盾,因此得到(2)是不对的; 根据条件②③得到(3)是对的;
例2 有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:
①甲比乙住的楼层高,比丙住的楼层低,丁住第四层; ②医生住在教师的楼上,在工人的楼下,工程师住最低层。
试问:甲、乙、丙、丁各住在这座楼的几层?各自的职业是什么?
解答 (1)由已知条件,丁住在第四层,是最高层,于是甲、乙、丙只能住在1,2,3这三层之中了.因为条件①还告诉我们,“甲比乙住的高”比“丙住的低”,所以甲肯定住在第二层,而丙住在第三层,乙住在第一层.
(2)由条件②知道,工程师住在最低层,说明工程师是住在一层.那么,医生、教师、工人一定住在2,3,4层,条件②还
小学四年级奥数— - 逻辑推理
小学四年级数学 逻辑推理 (例题详解)
例1 对某班同学进行了调查,知道如下情况: ①有哥哥的人没有姐姐; ②没有哥哥的人有弟弟; ③有弟弟的人有妹妹。 试问:
(1)有姐姐的人一定没有哥哥,对吗? (2)有弟弟的人一定没有哥哥,对吗? (3)没有哥哥的人一定有妹妹,对吗? 解答:根据条件①得到(1)是对的;
“有弟弟且有哥哥”并不与①②③矛盾,因此得到(2)是不对的; 根据条件②③得到(3)是对的;
例2 有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:
①甲比乙住的楼层高,比丙住的楼层低,丁住第四层; ②医生住在教师的楼上,在工人的楼下,工程师住最低层。
试问:甲、乙、丙、丁各住在这座楼的几层?各自的职业是什么?
解答 (1)由已知条件,丁住在第四层,是最高层,于是甲、乙、丙只能住在1,2,3这三层之中了.因为条件①还告诉我们,“甲比乙住的高”比“丙住的低”,所以甲肯定住在第二层,而丙住在第三层,乙住在第一层.
(2)由条件②知道,工程师住在最低层,说明工程师是住在一层.那么,医生、教师、工人一定住在2,3,4层,条件②还
六年级奥数逻辑推理
逻辑推理(一) 理(一)专题简析:
逻辑推理题不涉及数据,也没有几何图形,只涉及一些相互关联的条件。它依据逻辑汇率,从一定的前提出发,通过一系列的推理来获取某种结论。
解决这类问题常用的方法有:直接法、假设法、排除法、图解法和列表法等。
逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后作出正确的判断。
推理的过程中往往需要交替运用“排除法”和“反正法”。要善于借助表格,把已知条件和推出的中间结论及时填入表格内。填表时,对正确的(或不正确的)结果要及时注上“√”(或“×”),也可以分别用“1”或“0”代替,以免引起遗忘或混乱,从而影响推理的速度。
推理的过程,必须要有充足的理由或重复内的根据,并常常伴随着论证、推理,论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。
例题1
星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了。传达室人员告诉他:这是班里四个住校学生中的一个做的好事。于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。 (1)许兵说:桌凳不是我修的。 (2)李平说:桌凳是张明修的。 (3)刘成说:桌凳是李平修的。 (4)张明说:我没有修过桌凳。
奥数:8-3-1逻辑推理题库
8-3逻辑推理
教学目标
1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等 2. 培养学生的逻辑推理能力,掌握解不同题型的突破口 3. 能够利用所学的数论等知识解复杂的逻辑推理题
知识点拨
逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.
二、假设推理
用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.
解题突破口:找题目所给的矛盾点进行假设
三、体育比赛中的数学
对于体育比赛形式的逻辑推理题,注意“一队的胜、负、
小学奥数专题158-3-1逻辑推理 题库学生版
8-3逻辑推理
教学目标
1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等 2. 培养学生的逻辑推理能力,掌握解不同题型的突破口 3. 能够利用所学的数论等知识解复杂的逻辑推理题
知识点拨
逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.
二、假设推理
用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.
解题突破口:找题目所给的矛盾点进行假设
三、体育比赛中的数学
对于体育比赛形式的逻辑推理题,注意“一队的胜、负、
小学数学-逻辑推理
逻辑推理
根据历年小升初的考试的题型总结,逻辑推理题多以填空题的形式出现,一般位于最后一题或者倒数第二题的位置。分值一般为3分,但也在解决问题里面出现过。
逻辑推理题的解决方法: 假设法 网格法 排除法
典型例题
例一、有一座四层楼,每层楼有3个窗户,每个窗户有4块玻璃,分别是白色和茶色。每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数。四个楼层表示的三位数有:791,275,362,612。问:第二层楼表示哪个三位数
答案:第三层是612
拓展一:下图是标有1、2、3、4、5、6数字的正方体的三种不同摆放,问三个正方体朝左那一面的数字之和是多少?
点拨:1与4相对,2与6相对,3与5相对,
图一朝左的一面数字是5,图二朝左的一面数字是1,图三朝左的一面数字是4, 三个正方体朝左的那一面的数字之和是: 5+1+4=10.
拓展二:在三只盒子里,一只装有两个红球,一只装有两个白球,还有一只装有红球和白球各一个.现在这三只盒子上的标签全贴错了,你能只从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么吗? 点拨:从贴“一红一白”标签的盒子里拿球
若是红球,则贴“红”标签的为白球,剩下的为一红一白 若是白球,则贴“白”
三年级奥数-逻辑推理 (1)
第十一讲:逻辑推理
教学目标
1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析法等 2. 培养学生的逻辑推理能力,掌握解不同题型的突破口. 3. 能够利用所学的数论等知识解复杂的逻辑推理题
知识精讲
逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法
逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.
二、假设推理
用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.
解题突破口:找题目所给的矛盾点进行假设
模块一、列表推理法
【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个
逻辑推理四年级奥数专题
逻辑推理之列表法、假设法
(★★★)
甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知: ⑴教师不知道甲的职业; ⑵医生曾给乙治过病; ⑶律师是丙的法律顾问; ⑷丁不是律师; ⑸乙和丙从未见过面。
根据以上条件判断甲的职业是________,乙的职业是________。
(★★★)
甲、乙、丙在2011年高考中,分别考取了北大,清华和理工大学的数学系,物理系和化学系,现知道下列情况 ⑴甲不在北大; ⑵乙不在清华; ⑶在北大的不学数学; ⑷在清华的学物理; ⑸乙不学化学。
根据以上情况判断甲、乙、丙三人各在哪个学校?哪个系?
(★★★★)
有这样三个的职业人,他们分别姓李、蒋和刘,他们每人身兼两职,三个人的六种职业是作家、音乐家、美术家、话剧演员、诗人和工人,同时还知道以下的事实: ⑴音乐家以前对工人谈论过对“古典音乐”的欣赏; ⑵音乐家出国访问时,美术家和李曾去送行; ⑶工人的爱人是作家的妹妹;
⑷作家和诗人曾经在一起探讨“百花齐放”的问题; ⑸美术家曾与姓蒋的看过电影;
⑹姓刘的善下棋,姓蒋的和那作家跟他对奕时,屡战屡败。 请问他们的职业是什么?
1
(★★)
一个外地人路过一个小镇,此时天色已晚
五年级奥数专题18:逻辑推理
十八 逻辑推理(A)
年级 班 姓名 得分 一、填空题
1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .
2. A、B、C、D、E和F六人一圆桌坐下.
B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻. 那么,坐在A和B之间的是 .
3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了 盘,得了 分.
4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.
曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.” 钱:“今天我