小学工程问题教案
“小学工程问题教案”相关的资料有哪些?“小学工程问题教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学工程问题教案”相关范文大全或资料大全,欢迎大家分享。
小学数学工程问题
小学数学工程问题
工程问题
问题分析
“1”的应用题,它具有抽象性,学生认知起来比较困难。因此,在教学中,如何让学生建立正确概念是数学应用题的关键。联系实际,让学生理解工作总量、工作时间、工作效率之间的概念及它们之间的数量关系。充分发挥学生的主体地位,锻炼学生已有的知识解决合作问题。
在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 ——工作量=工作效率×时间。在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”. 举一个简单例子.:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?
一件工作看成1个整体,因此可以把工作量算作1。所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到:所需时间=工作量÷工作效率=6(天)。为了计算整数化(尽可能用整数进行计算),可以把工作量多设份额,还是上题,10与15的最小公倍数是30,设全部工作量为30份.那么甲每天完成3份,乙每天完成2份,两人合作所需天数是:30÷(3+ 2)= 6(天),整
小学工程问题(教师)
一:简单工程问题(工作总量=工作效率*工作时间)
生产同一种零件,甲要小时,乙要小时,丙要12分钟,甲乙丙三人中工作效率最高的是( )
A.甲 B.乙 C.丙 【考点】简单的工程问题.
【分析】要求甲乙丙三人中工作效率最高的是谁,就要分别求出各自的工作效率,然后比较即可.
【解答】解:12分钟=小时. 甲的工作效率: 1÷=6;
乙的工作效率: 1÷=7;
丙的工作效率: 1÷=5.
答:乙的工作效率最高. 故选:B.
两个修路队5天合修2500米长的一段路,乙队每天修300米,甲队每天修多少米?正确列式是( )
A.2500÷5﹣300 B.(2500﹣300)÷5 C.2500﹣300×5 【考点】简单的工程问题. 【专题】工程问题. 【分析】用路的总长度除以时间就是工作效率的和减去乙队每天修的米数,得到的差就是甲队每天修的米数.
【解答】解:2500÷5﹣300 =500﹣300 =200(米)
答:甲队每天修200米. 故选:A.
小东4分钟跳绳356下,小茜3分钟跳绳291下,他们两人 小茜 跳得快一些. 【考点】简单的工程问题. 【专题】工程问题.
【分析】首先分别求出小东和小茜每分钟各跳多少下,然后进行比较即可. 【
小学工程问题及答案
工业设备及管道绝热工程施工质量验收规范 附录表
在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是
工作量 工作效率 时间
在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做 工程问题
举一个简单例子
一件工作,甲做 天可完成,乙做 天可完成 问两人合作几天可以完成?
一件工作看成 个整体,因此可以把工作量算作 所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是 天 , 天就是一个单位,
再根据基本数量关系式,得到
所需时间 工作量 工作效率
(天)
两人合作需要 天
这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的
为了计算整数化(尽可能用整数进行计算),如第三讲例 和例 所用方法,把工作量多设份额 还是上题, 与 的最小公倍数是 设全部工作量为 份 那么甲每天完成 份,乙每天完成 份 两人合作所需天数是
( ) (天)
数计算,就方便些
∶ 或者说 工作量固定,工作效率与时间成反比例 甲、乙工作效率的比是 ∶ ∶ 当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是 因此,在下面例题的讲述中,
工程问题教案
《工程问题》教学设计
教学内容:人教版小学数学教材六年级上册第42~43页例7及相关练习。
教学目标:
1.让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。
2.通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。
教学重点:认识工程问题的特点,掌握其数量关系、解题思路和方法。
教学难点:学会用“工程问题”的方法解决实际问题。
教学准备:课件。
教学过程:
一、复习旧知
师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)
(1)修一条360米的公路,甲队修12天完成,平均每天修多少米?
360÷12=30(米)。
师:你是怎样列式的?为什么?(教师板书:工作总量÷工作时间=工作效率。)
(2)修一条360米的公路,甲队每天修18米,多少天能完成?
360÷18=20(天)。
师:你是怎样列式的?为什么?(教师板书:工作总量÷工作效率=工作时间。)
(3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?
1÷8=
。(师:你是根据什么来列式的?)
(师小结:不知道工作总量时,
小学比较典型的工程问题
小学比较典型的工程问题
工程问题是我们在小学学习过程中必不可少的,这里通过实践总结出了一些工程实际问题和变形的工程问题,解此类问题的关键在于设好单位1,其次要把握住最基本的运算公式工程总量=工作效率×工作时间,万变不离其宗。
1、王师傅加工一批零件,计划在六月份每天都能超额完成当天任务的15%,后来因机器维修,最后的5天每天只完成当天任务的八成,就这样,六月份共超额加工660个零件,王师傅原来的任务是每天加工多少个零件?
2、一堆饲料,3牛和5羊可以吃15天,5牛和6羊可以吃10天,那8牛和11羊可以吃几天
3、甲、乙合作完成一项工作,由于配合得好,甲的工作效率比独做时提高了十分之一,乙的工作效率比独做时提高了五分之一,甲、乙两人合作4小时,完成全部工作的五分之二。第二天乙又独做了4小时,还剩下这件工作的三十分之十三没完成。这项工作甲独做需要几个小时才能完成?
4、一项工程A、B两人合作6天可以完成。如果A先做3天,B再接着做7天,可以完成,B单独完成这项工程需要多少天?
5、某工程,由甲乙两队承包,2.4天可以完成,需支付1800元,由乙丙两队承包,3又3/4天可以完成,需支付1500元,由甲丙两队承包,2又6/7天可以完成
小学比较典型的工程问题
小学比较典型的工程问题
工程问题是我们在小学学习过程中必不可少的,这里通过实践总结出了一些工程实际问题和变形的工程问题,解此类问题的关键在于设好单位1,其次要把握住最基本的运算公式工程总量=工作效率×工作时间,万变不离其宗。
1、王师傅加工一批零件,计划在六月份每天都能超额完成当天任务的15%,后来因机器维修,最后的5天每天只完成当天任务的八成,就这样,六月份共超额加工660个零件,王师傅原来的任务是每天加工多少个零件?
2、一堆饲料,3牛和5羊可以吃15天,5牛和6羊可以吃10天,那8牛和11羊可以吃几天
3、甲、乙合作完成一项工作,由于配合得好,甲的工作效率比独做时提高了十分之一,乙的工作效率比独做时提高了五分之一,甲、乙两人合作4小时,完成全部工作的五分之二。第二天乙又独做了4小时,还剩下这件工作的三十分之十三没完成。这项工作甲独做需要几个小时才能完成?
4、一项工程A、B两人合作6天可以完成。如果A先做3天,B再接着做7天,可以完成,B单独完成这项工程需要多少天?
5、某工程,由甲乙两队承包,2.4天可以完成,需支付1800元,由乙丙两队承包,3又3/4天可以完成,需支付1500元,由甲丙两队承包,2又6/7天可以完成
小学六年级奥数教案—05工程问题一
小学六年级奥数教案—05工程问题一
本教程共30讲
工程问题(一)
顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。 在分析解答工程问题时,一般常用的数量关系式是: 工作量=工作效率×工作时间, 工作时间=工作量÷工作效率, 工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可
工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。 工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。但在不引起误会的情况下,一般不写工作效率的单位。 例1 单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?
分析与解:以全部工程量为单位1。甲队单独干需100天,甲的工作效
例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?
分析:将题目的条
小学六年级奥数教案—05工程问题一
小学六年级奥数教案—05工程问题一
本教程共30讲
工程问题(一)
顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。 在分析解答工程问题时,一般常用的数量关系式是: 工作量=工作效率×工作时间, 工作时间=工作量÷工作效率, 工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可
工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。 工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。但在不引起误会的情况下,一般不写工作效率的单位。 例1 单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?
分析与解:以全部工程量为单位1。甲队单独干需100天,甲的工作效
例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?
分析:将题目的条
小学奥数工程问题分类讲解
小学奥数─工程问题分类讲解
工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。在教学中,让学生建立正确概念是解决工程应用题的关键。
一. 工程问题的基本概念
定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。 工作总量:一般抽象成单位“1” 工作效率:单位时间内完成的工作量
三个基本公式:工作总量=工作效率×工作时间, 工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率;
二、为了学好分数、百分数应用题,必须做到以下几方面:
① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;
② 在理解、掌握分数的意义和性质的前提下灵活运用;
③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;
④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单
新课标人教版小学六年级数学工程问题应用题练习题1
工程 问题典型题库
工程问题
计算有关工程的工作总量、工作时间、工作效率的问题叫“工程问题”。
工程问题是分数应用题的特例。但它同整数应用题中的工程问题一样,同样是研究工作效率、工作时间、工作总量三者之间的关系。所不同的是在整数应用题中的工程问题,工作总量、工作效率都告诉我们具体的数量,而分数应用题中的工程问题,一般不告诉具体的工作总量,也不告诉具体的工作效率。解题的关键是根据分数的意义,把工作总量看作“1”,用完成工作总量所需时间的倒数表示工作效率。
工程问题的特点:
一般工程问题都是,已知独做的工作时间(或合作的工作时间),求合作的时间(或独做的工作时间)。
分析方法:
从问题入手,确定是求谁来完成哪一部分工作量所需要的时间,就用要完成的那部分工作量除以谁的工作效率。
工程问题的基本数量关系式: 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间
1. 一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工?
2. 一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,
3
几小时能加工完这批零件的 ?
4
1
3. 一项工作,甲单独做要10天完成,乙单