高中数学66个秒杀技巧模型
“高中数学66个秒杀技巧模型”相关的资料有哪些?“高中数学66个秒杀技巧模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学66个秒杀技巧模型”相关范文大全或资料大全,欢迎大家分享。
高中数学放缩技巧
高考数学备考之放缩技巧
证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩 (3)求证:1 1 3 1 3 5 1 3 5 (2n 1) 2n 1 1
2
2 4
2 4 6
2 4 6 2n
(4)求证:2(n 1 1) 1 1 1 1 (2n 1 1)
技巧主要有以下几种: 一、裂项放缩
例1(1)求 n2的值; (2)求证:n
15. k 14k2 1 2
k 1k3
奇巧积累:(1)1 4 4 2
11
(2)1211 n24n24n2 1 2n 1 2n 1
C12
n 1Cn(n 1)n(n 1)n(n 1)n(n 1)
(3)T
1n
r
n! 1 1 1 1r 1
Crn
1 1
rr(r 2) r!(n r)!nr!r(r 1)r (4)(1 1n)n 1 1 12 1 13 2 1n
高中数学解题小技巧
高中数学解题小技巧
一、代入法
若动点P(x,y)依赖于另一动点Q(x0,y0)而运动,而Q点的轨迹方程已知(也可能易于求得)且可建立关系式x0?f(x),y0?g(x),于是将这个Q点的坐标表达式代入已知(或求得)曲线的方程,化简后即得P点的轨迹方程,这种方法称为代入法,又称转移法或相关点法。
【例1】(2009年高考广东卷)已知曲线C:y?x2与直线l:
x?y?2?0交于两点A(xA,yA)和B(xB,yB),且xA?xB,记曲线
C在
点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程; 【巧解】联立y?x2与y?x?2得xA??1,xB?2,则AB中点Q(15,), 2215?s?t22设线段PQ 的中点M坐标为(x,y),则x?, ,y?2215即s?2x?,t?2y?,又点P在曲线C上,
225111∴2y??(2x?)2化简可得y?x2?x?,又点P是L上的任一
228点,
115?2,即??x?, 2441115∴中点M的轨迹方程为y?x2?x?(??x?).
844且不与点A和点B重合,则?1?2x?【例
高中数学函数解题技巧
专题1 函数 (理科)
一、考点回顾
1.理解函数的概念,了解映射的概念.
2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析
考点一:函数的性质与图象
函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.
3.培养学生用运动变
高中数学公式大全150个
高中数学公式大全
(最全面,最详细)
高中数学公式大全 抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y
一般用于求最大值与最小值 抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(
史上最全高中数学公式大全(附送高中数学公式提升_高考应试技巧)
精品资料,高考必备!
高中数学常用公式及结论
海南省保亭中学 马军
1、 元素与集合的关系: x A x CUA; x CUA x A; ØA A
2、 集合{a1,a2, ,an}的子集个数共有2 个;真子集有2 1个;非空子集有2 1个;非空的真子 有2 2个.
3 、 二次函数的解析式的三种形式:
(1) 一般式f(x) ax2 bx c(a 0);
(2) 顶点式f(x) a(x h)2 k(a 0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3) 零点式f(x) a(x x1)(x x2)(a 0);
(当已知抛物线与x轴的交点坐标为(x1,0),(x2,0)时,设为此式) (4)切线式:f(x) a(x x0)2 (kx d),(a 0)。
(当已知抛物线与直线y kx d相切且切点的横坐标为x0时,设为此式)
4 、 真值表: 同真且真,同假或假 5
n
n
n
n
6.)
充要条件:(1)、p q,则P是q的充分条件,反之,q是p的必要条件;
(2)、p q,且q ≠> p,则P是q的充分不必要条件; (3)、p ≠> p ,且q p,则P是q的必要不充分条件; (4)、p ≠> p ,且q ≠> p,则P是q的既不充
高中数学怎么学-怎样学好高中数学
高中女生该如何学好数学
高中数学怎么学-怎样学好高中数学
一、 高中数学课的设置
高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。
二、初中数学与高中数学的差异。
1、知识差异。
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为
高中数学怎么学-怎样学好高中数学
高中女生该如何学好数学
高中数学怎么学-怎样学好高中数学
一、 高中数学课的设置
高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。
二、初中数学与高中数学的差异。
1、知识差异。
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为
高中数学16个二级结论
高中数学16个二级结论
结论一 奇函数的最值性质
已知函数f(x)是定义在集合D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.
(x?1)2?sinx例1 设函数f(x)?的最大值为M,最小值为m,则M+m= . 2x?1跟踪集训1.(1)已知函数f(x)?ln(1?9x2?3x)?1,则f(lg2)?f(lg) =( ) A.-1
B.0 C.1 D.2
12(2)对于函数f(x)=asin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一.定不可能是( )A.4和6 .....
结论二 函数周期性问题
已知定义在R上的函数f(x),若对任意的x∈R,总存在非零常数T,使得f(x+T)=f(x),则称f(x)是周期函数,T为其一个周期.
常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a. (2)如果f(x+a)=
B.3和1
C.2和4
高中数学论文-新课标下高中数学教学反思
高中数学论文|新课标下高中数学教学反思
【摘要】力度空前、理念新颖的数学课程改革,有力地促进了教师角色的转换,改变了教师的教学教研观念和方式,更改变了学生的学习方式和精神风貌。作为新课程推行的主体——教师,想迅速成长,须合理、有效地对我们教学进行反思,才能达到“在发展学生的同时实现教师自身的提高”的目的。
【关键词】高中数学新课标 教学反思
“吾日三省吾身”是我国古代的教育家对反思问题的最简洁表达。新课程标准颁布,为新一轮教学改革指明了方向,同时也为教师的发展指明了道路,作为教师的我们,须认真学习新课程标准和现代教学教育理论,深刻反思自己的教学实践并上升到理性思考,尽快跟上时代的步伐。我从事高中数学教学已有一段时间,在教学中,经历了茫然与彷徨,体验了无所适从到慢慢摸索的课堂教学组织,其间不乏出现各种思维的碰撞,而正是这些体验、碰撞不断的引起我对高中数学教学的反思,更加坚定了课改的信念,并从中得到启迪,得到成长。
一、教学观念上反思
课改,首先更新教学观念,打破陈旧的教学理念,苏霍姆林斯基说过:“懂得还不等于己知,理解还不等于知识,为了取得更牢固的知识,还必须思考。”作为新课程推行的主体——教师,长期以来已习惯于“以教师为中心”的教学模式,
高中数学解题思想方法技巧大总结
选校网d65e74c58bd63186bcebbc99高考频道专业大全历年分数线上万张大学图片大学视频院校库
目录
前言 (2)
第一章高中数学解题基本方法 (3)
一、配方法 (3)
二、换元法 (7)
三、待定系数法 (14)
四、定义法 (19)
五、数学归纳法 (23)
六、参数法 (28)
七、反证法 (32)
八、消去法………………………………………
九、分析与综合法………………………………
十、特殊与一般法………………………………
十一、类比与归纳法…………………………
十二、观察与实验法…………………………
第二章高中数学常用的数学思想 (35)
一、数形结合思想 (35)
二、分类讨论思想 (41)
三、函数与方程思想 (47)
四、转化(化归)思想 (54)
第三章高考热点问题和解题策略 (59)
选校网d65e74c58bd63186bcebbc99专业大全历年分数线上万张大学图片大学视频院校库
选校网d65e74c58bd63186bcebbc99高考频道专业大全历年分数线上万张大学图片大学视频院校库
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分