空间向量与立体几何知识点归纳总结
“空间向量与立体几何知识点归纳总结”相关的资料有哪些?“空间向量与立体几何知识点归纳总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“空间向量与立体几何知识点归纳总结”相关范文大全或资料大全,欢迎大家分享。
空间向量与立体几何知识点归纳总结
一对一授课教案
学员姓名: 年级: 所授科目:
上课时间: 年 月 日 时 分至 时 分共 小时
老师签名 教学主题 上次作业检查 本次上课表现 本次作业 空间向量与立体几何 学生签名
一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
? ????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)
???b,记作a//b。
运算法则:三角形法则、平行四边形法则、平行六面体法则 3
空间向量与立体几何知识点和习题(含答案)
空间向量与立体几何
【知识要点】
1.空间向量及其运算: (1)空间向量的线性运算:
①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.
②空间向量的线性运算的运算律: 加法交换律:a+b=b+a;
加法结合律:(a+b+c)=a+(b+c);
分配律:(??+??)a=??a+??a;??(a+b)=??a+??b. (2)空间向量的基本定理:
①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数??,使得a∥??b.
②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数??,??,使得c=??a+??b.
③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组??1,??2,??3,使得p=??1a+??2b+??3c.
(3)空间向量的数量积运算:
①空间向量的数量积的定义:a·b=|a||b|cos〈a,b〉; ②空间向量的数量积的性质:
a·e=|a|cos<a,e>;a⊥b?a·b=0; |a|2=a·a;|a·b|≤|a||b|. ③空间向量的数量积的运算律: (??a
空间向量与立体几何
关于空间向量与立体几何
1 空间向量与立体几何
一、平行与垂直问题
(一) 平行
线线平行 线面平行 面面平行 注意:这里的线线平行包括线线重合,线面平行包括直线在平面内,面面平行包括面面重合。
(二) 垂直
线线垂直 线面垂直 面面垂直 注意:画出图形理解结论
二、夹角与距离问题
(一) 夹角
(二)距离
点、直线、平面之间的距离有7种。点到平面的距离是重点.
1.已知四棱锥P A B C D -的底面为直角梯形,//A B D C ,
设直线,l m 的方向向量分别为,a b ,平面 ,αβ的法向量分别为,u v ,则
l ∥m ?a ∥b a k b ?=
;
l ∥α?a
u ⊥ 0a u ??=
;
α∥β?u ∥v .u k v ?=
设直线,l m 的方向向量分别为
,a b ,平面 ,αβ的法向量分别为,u v ,则
l ⊥α?a ∥u a k u ?= ;
l ⊥m ?a ⊥b 0a b ??=
;
α⊥β?u ⊥v .0=??v u
设直线,l m 的方向向量分别为,a b ,平面,αβ 的法向量分别为,u v ,则
①两直线l ,m 所成的角为θ(02π
θ≤≤),cos a b
a b
θ?=
;
②直线l 与平面α
立体几何知识点归纳(复习资料)
高考总复习主干知识三:立体几何
主干知识三:立体几何知识点归纳
一.直线和平面的三种位置关系: 1. 线面平行
l方法一:用线线平行实现。
l//m??m????l//? l????方法二:用面面平行实现。
α符号表示:
αlAβl2. 线面相交
?//????l//? l???方法三:用平面法向量实现。
符号表示:
若n为平面?的一个法向量,n?l且
lαnl3. 线在面内
ααl??,则l//?。
符号表示:
3. 面面平行:
方法一:用线线平行实现。
二.平行关系: 1. 线线平行:
方法一:用线面平行实现。
l?l//l'??l????l//m ????m??
l//???m//m'????//?l,m??且相交?αl',m'??且相交??
方法二:用线面平行实现。
βl'm'ml?ml//?方法二:用面面平行实现。
lβγαm?//???????l??l//m ????m??? ?m//???//??l,m??且相交??
方法三:用向量方法:
两个平面的法向量共线
三.垂直关系: 1. 线面垂直:
方法一:用线线垂直实现。
βml α方法三:用线面垂直实现。
专题十 空间向量与立体几何
专题十 空间向量与立体几何
【知识点总结】
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
?????OP??a(??R)
?????????????? ?????????????? OB?OA?AB?a?bBA?OA?OB?a?b;
;
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那
??么这些向量也叫做共线向量或平行向量,a平行于b,记作。
??????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存
??在实数λ,使a=λb。
??a//b(3)三点共线:A、B、C三点共线<=>AB??AC <=>OC?xOA?yOB(其中x?y?1) (4)与a共线的单位向
空间向量知识点归纳总结(经典)
空间向量与立体几何知识点归纳总结
一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
?????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)
运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共
??线向量或平行向量,a平行于b,记作
?????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存在实数
??a//b。 ???λ,使a=λb。
(3)三点共线:A、B、C三点共线<=>AB??AC
<=>OC?xOA?yOB(其中x?y?1)
?a(4)与共线的单位向量为
aa
???x,y使
高考立体几何知识点总结(详细)
高考立体几何知识点总结
一 、空间几何体 (一) 空间几何体的类型
1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的
面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征
1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类
图1-1 棱柱
底面是四边形
底面是平行四边形
侧棱垂直于底面
棱柱
底面是矩形
四棱柱
底面是正方形
平行六面体
棱长都相等
直平行
六面体长方体正四棱柱正方体 性质:
Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;
1.3 棱柱的面积和体积公式
S直棱柱侧 ch(c是底周长,h是高)S直棱柱表面 = c·h+ 2S底 V棱柱 = S底 ·h
2 、棱锥的结构特征
2.1 棱锥的定义
(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角
空间向量与立体几何练习题
【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式
????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?
解:∵OP?(1?z?y)OA?yOB?zOC,
????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.
例2.已知
O D ?ABCD,从平面AC外一点O引向量
A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,
(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.
C B G
F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,
????????????∵EG?OG?OE,
?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA
立体几何知识点复习
【知识络构建】
【重点知识整合】 1.空间几何体的三视图
(1)正视图:光线从几何体的前面向后面正投影得到的投影图; (2)侧视图:光线从几何体的左面向右面正投影得到的投影图; (3)俯视图:光线从几何体的上面向下面正投影得到的投影图. 几何体的正视图、侧视图和俯视图统称为几何体的三视图. 2.斜二测画水平放置的平面图形的基本步骤
(1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox,Oy,建立直角坐标系;
(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox′,Oy′,使∠x′Oy′=45°(或135°),它们确定的平面表示水平平面;
(3)画对应图形,在已知图形中平行于x轴的线段,在直观图中画成平行于x′轴,且长度保持不变;在已知图形中平行于y轴的线段,在直观图中画成平行于y′轴,且长度变为原来的一半;
(4)擦去辅助线,图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线). 3.体积与表面积公式:
(1)柱体的体积公式:V柱?Sh;锥体的体积公式: V锥?台体的体积公式: V棱台?1Sh; 341h(S?SS??S?);球的体积公式: V球??r3.
332 (2)球的表面积公式: S球?4?R.
【高频考点突破
空间向量与立体几何练习题
【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式
????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?
解:∵OP?(1?z?y)OA?yOB?zOC,
????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.
例2.已知
O D ?ABCD,从平面AC外一点O引向量
A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,
(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.
C B G
F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,
????????????∵EG?OG?OE,
?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA