九年级数学二次函数动点问题
“九年级数学二次函数动点问题”相关的资料有哪些?“九年级数学二次函数动点问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九年级数学二次函数动点问题”相关范文大全或资料大全,欢迎大家分享。
九年级数学二次函数教案
1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念.3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴.5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.
第二十六章 二次函数
[本章知识要点]
1. 探索具体问题中的数量关系和变化规律.
2. 结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念. 3. 会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质. 4. 会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5. 会利用二次函数的图象求一元二次方程(组)的近似解.
6. 会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决
简单的实际问题.
26.1 二次函数
[本课知识要点]
通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义. [MM及创新思维]
(1)正方形边长为a(cm),它的面积s(cm2)是多少?
(2)矩形的长是4厘米,宽
九年级数学二次函数知识点总结及题型训练
第 1 页 共 10 页 二次函数 知识点总结
一、二次函数概念:
1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,
叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数
0a ≠,而b c ,可以为零.二次函数自变量x 的取值范围是全体实数.
2. 二次函数2y ax bx c =++的结构特征:
⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.
二、二次函数的基本形式
1.顶点式 ()2y a x h k =-+的性质:
2.一般式
2y ax bx c =++的性质 三、二次函数图象的平移
第 2 页 共 10 页 1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:
【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位
2. 平移规律
在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.
九年级数学二次函数的图像同步练习
二次函数的图象 同步练习
1.函数y=2(x+1)2是由y=2x向 平移 单位得到的.
2
2.函数y=-3(x-1)2+1是由y—3x向 平移 单位,再向 平移 单位得到的. 3.函数y=3(x-2)2的对称轴是 ,顶点坐标是 ,图像开口向 ,当x 时,y随x的增大而减小,当x 时,函数y有最 值,是 .
4.函数y=-(x+5)2+7的对称轴是 ,顶点坐标是 ,图象开口向 ,当x 时, y随x 的增大而减小,当 时,函数y有最 值,是 .
6.在同一坐标系内,画出函数y=2x2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点. 7. 二次函数y=(x-1)2-2的顶点坐标是( )
A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2) 8. 把y= -x2-4x+2化成y= a (x+m)2 +n的形式是( )
九年级数学二次函数的图像同步练习
二次函数的图象 同步练习
1.函数y=2(x+1)2是由y=2x向 平移 单位得到的.
2
2.函数y=-3(x-1)2+1是由y—3x向 平移 单位,再向 平移 单位得到的. 3.函数y=3(x-2)2的对称轴是 ,顶点坐标是 ,图像开口向 ,当x 时,y随x的增大而减小,当x 时,函数y有最 值,是 .
4.函数y=-(x+5)2+7的对称轴是 ,顶点坐标是 ,图象开口向 ,当x 时, y随x 的增大而减小,当 时,函数y有最 值,是 .
6.在同一坐标系内,画出函数y=2x2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点. 7. 二次函数y=(x-1)2-2的顶点坐标是( )
A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2) 8. 把y= -x2-4x+2化成y= a (x+m)2 +n的形式是( )
九年级数学二次函数与反比例函数试题
二次函数与反比例函数试卷
注意事项:本卷共三大题,计24小题,满分150分.考试时间120分钟.
一、 选择题(本题共10小题,每小题4分,满分40分)
1、下列函数中,一定是二次函数的是 ( )
x2A、y?? ; B、y?x(x2?2x?1) ;
π C、y?x?2
21; D、y?ax2?bx?c(a、、均是常数bc) . 2xB、对称轴为y=3
D、当x>3时y随x增大而减小
2、对于y=5(x-3)+2的图象下列叙述正确的是 ( )
A、顶点坐标为(-3,2) C、当x>3时y随x增大而增大
3、函数y?x2?4x?1的图象顶点是 ( )
A 、(-2,3) B、(2,-3) C、(-2,-3) D、(-3,2) .
4、已知函数y?ax?c的图象如下,则函数y?ax+2
九年级数学实际问题与二次函数
26.3 实际问题与二次函数(3)
探究3 图中是抛物线形拱桥,当水面在 l 时,拱顶离水面2m, 水面宽4m,水面下降1m时,水面宽度增加了多少?
解一解二 解三
继续
解一 以抛物线的顶点为原点,以抛物线的对称轴为 y轴,建立平 面直角坐标系,如图所示. ∴可设这条抛物线所表示 的二次函数的解析式为:
y ax
2
当拱桥离水面2m时,水面宽4m 即抛物线过点(2,-2) a 0.5
2 a 2 2
∴这条抛物线所表示的二 次函数为: y 0.5 x 2 当水面下降1m时,水面的 纵坐标为y=-3,这时有:
这时水面宽度为 2 6m∴当水面下降1m时,水面宽 度增加了( 2 6 4 )m 返回
3 0.5 x 2 x 6
解二 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系. 此时,抛物线的顶点为(0,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y ax2 2当拱桥离水面2m时,水面宽4m 即:抛物线过点(2,0)
0 a 22 2 a 0.5
∴这条抛物线所表示的二 次函数为: y 0.5 x 2 2 当水面下降1m时,
二次函数动点问题(含答案)
二次函数的动态问题(动点)
1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形
MDNA的面积为S.若点A,点D同时以每秒1个单位
的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),
F(0,?8).
设抛物线C2的解析式是
y?ax2?bx?c(a?0),
?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,
?c??8.?所以所求抛物线的解析式是y??x?6x?8.
北师大版九年级数学二次函数专项复习
可用直接多媒体上课。
二次函数
一、填空题:
y (m 1)x1、当m=____时,函数
向_____。
m 1
是二次函数.
2
12
y x 2 5
2、抛物线的顶点坐标是______,对称轴是_____,开口2
y ax h k y 3x 6x 33、把化为的形式,y=_________。
2
2
4、将抛物线
y 2(x 3) 3向右平移2个单位后,在向下平移5个单
1
2
位后所得抛物线顶点坐标为_______。
可用直接多媒体上课。
5、抛物线
y ax
2
2
经过点(3,5),则
a = ;
6、抛物线y
x 2x m,若其顶点在x轴上,则m .
2
7、已知二次函数y (m 1)x 2mx 3m 2,则当
大值为0.
8、抛物线如图所示:当x=_______时,y=0, 当x_____时,y>0;当x_____时,y<0;
9、如图:在一幅长80cm,宽50cm的矩形风 景画的四周镶一条金色纸边,制成一幅矩形
2
挂画,设整个挂画总面积为ycm,金色纸 边的宽为xcm,则y与x的关系式 是___________________.
m 2
可用直接多媒体上课。
二、选择题
1、下列函数中,图象一定经过原点的函数是 ( ) 2
A. y
3x 2 B.y 1
X C.
y x
二次函数与圆综合动点问题
二次函数与圆综合动 点问题 1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
y
y=x+b
D M 4 C
3 2 1
A B
x ?1 O 1
2.如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA?没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm. (1)求x、y所满足的关系式,并写出x的取值范围. (2)当△MOP为等腰三角形时,求相应的x的值. B
M Q
O P A
3.如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积;
(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CP
人教版九年级数学下二次函数最全的中考二次函数知识点总结
人教版九年级数学下二次函数最全的中考知识点总结
? 相关概念及定义
b,c是常数,a?0)? 二次函数的概念:一般地,形如y?ax2?bx?c(a,的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项
c可以为零.二次函数的定义域是全体实数. 系数a?0,而b,? 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,? 二次函数各种形式之间的变换
2? 二次函数y?ax2?bx?c用配方法可化成:y?a?x?h??k的形式,其
b4ac?b2中h??,k?.
2a4a? 二次函数由特殊到一般,可分为以下几种形式:①y?ax2;
②y?ax2?k;③y?a?x?h?;④y?a?x?h??k;⑤y?ax2?bx?c.
? 二次函数解析式的表示方法
? 一般式:y?ax2?bx?c(a,b,c为常数,a?0); ? 顶点式:y?a(x?h)2?k(a,h,k为常数,a?0);
? 两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐
标). ? 注意:任何二次函数的解析式都可以化成一般式或顶点