初中数学奥林匹克几何题

“初中数学奥林匹克几何题”相关的资料有哪些?“初中数学奥林匹克几何题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学奥林匹克几何题”相关范文大全或资料大全,欢迎大家分享。

数学奥林匹克初中训练题(137)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学奥林匹克初中训练题

第一试

一、选择题(每小题7分,共42分)

1.小佩和小佛每人都有整数值的人民币,小佩对小佛说:“你若给我2元,我的钱数将是你的n倍.”小佛对小佩说:“你若给我n元,我的钱数将是你的2倍.”其中,n为正整数,则

n的可能值的个数是( )

A.1

B.2

C.3

D.4

2.现有质量分别为7g和mg(m为正整数)的砝码若干个,在天平上要称出质量为1g的物体需用这两种砝码7个.则m取值的可能个数为( )

A.3

B.4

C.5

D.6

AEFD3.如图,已知E是矩形ABCD边AD的中点,BE⊥AC于点F,AF=2.则DF=( )

A.23 C.33

B.3

D.22 BCb、4.设三角形的三边长分别为a、其外接圆半径为R,abcc,

≥?b?c?R.则该三角形最大内角的度数为( )

A.150°

B.120°

C.90°

D.135°

5.已知?为锐角.则关于x的方程x3?x2??sin??3?x?1?0的根的情况是( ) A.只有一个正根

B.有三个正根

D.有两个正根、一个负根

C.有一个正根、两个负根

6.如图,已知C在以AB为直径的半圆⊙O上一

数学奥林匹克初中训练题_119_

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学能力竞赛决赛

34中等数学

数学奥林匹克初中训练题(119)

第一试

一、选择题(每小题7分,共42分)1.已知实数a、b、c满足abc≠0,a≠1,b≠1,c≠1,且 a+b+c=2008,

=1.

1-a1-b1-c

222

则a+b+c+8(1-a)(1-b)(1-(A)3336.如图2,

(B)334

O1

(C)335(D)336

O1

O2外切于点

P,

O2的半径分别

的值为(  ).

(A)22B)2+4()2+(D)2006+

22.如1△ABC的内、外角平分线交于点D.若AC>BC,则2CD-BC与AC的大小关系为(  ).

图1

(A)2CD-BC>AC(B)2CD-BC<AC

(C)2CD-BC=AC  (D)不确定3.梯形ABCD中,AD∥BC,AD=1,BC=CD=3.分别过点A、B、C作BC、CD、AB的垂线,三线共点.则这个梯形的面积是(  ).

(A) (B)2 (C)3 (D)4

54

4.在1,2,…,1000这1000个正整数中,依次随机取两个数p、q(p、q可以相等),

设先取出的数为p.则大于的概率为

q4

(  ).

(A)01875(B)0175(C)01625(D)0155.已知n!=1×2×

…

初中数学奥林匹克竞赛教程

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

初中数学奥林匹克竞赛教程

1

初中数学竞赛大纲(修订稿)

数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。

本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养??,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。

《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的

初中数学奥林匹克训练题(五)及答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学奥林匹克初中训练题(五)

第 一 试

一. 选择题.(每小题7分,共42分)

( )1.若a,b均为质数,且a b 2003,则a b的值为:

(A)1999 (B)2000 (C)2001 (D)2002

( )2.设a 0 b c,a b c 1,,M 2b ca ca b,N ,P ,则M,N,Pabc

之间的关系是:(A)M N P (B)N P M

(C)P M N (D)M P N

( )3.设ΔABC的三边长为a,b,c满足b c 8,bc a2 12a 52,则ΔABC的周

长是: (A)10 (B)14 (C)16 (D)不能确定

( )4.下面四个命题:①直角三角形的两边长为3,4,则第三边长为5;

② ③对角线相等且互相垂直的四边形是正方形;④若四边形ABCD中,AD∥BC,且 AB+BC=AD+DC,则四边形ABCD是平行四边形.

其中正确的命题的个数为:(A)0 (B)1 (C)2 (D)3

( )5.一个四位数aabb为平方数,则a b的值为:(A)11 (B)10 (C)9 (D)8

( )6.如果满足 ABC 60O,AC

初中数学奥林匹克训练题(五)及答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学奥林匹克初中训练题(五)

第 一 试

一. 选择题.(每小题7分,共42分)

( )1.若a,b均为质数,且a b 2003,则a b的值为:

(A)1999 (B)2000 (C)2001 (D)2002

( )2.设a 0 b c,a b c 1,,M 2b ca ca b,N ,P ,则M,N,Pabc

之间的关系是:(A)M N P (B)N P M

(C)P M N (D)M P N

( )3.设ΔABC的三边长为a,b,c满足b c 8,bc a2 12a 52,则ΔABC的周

长是: (A)10 (B)14 (C)16 (D)不能确定

( )4.下面四个命题:①直角三角形的两边长为3,4,则第三边长为5;

② ③对角线相等且互相垂直的四边形是正方形;④若四边形ABCD中,AD∥BC,且 AB+BC=AD+DC,则四边形ABCD是平行四边形.

其中正确的命题的个数为:(A)0 (B)1 (C)2 (D)3

( )5.一个四位数aabb为平方数,则a b的值为:(A)11 (B)10 (C)9 (D)8

( )6.如果满足 ABC 60O,AC

奥林匹克竞赛题

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第二届保良局(香港)国际 小学数学竞赛(1998.7)

队际赛试卷

1.在下面数列中,请问第1998个数是什么?

1,-2,2,-3,3,-3,4,-4,4,-4,5,-5,5,-5,5,-6,6,-6,6,-6,6,?。

2.有一项工程,小明先独做30天,接着小华继续独做5天,以后,他们两人合做10天才完成这项工程。同样的工程,如果由小明和小华合做,只需20天便可完成。假设小明和小华每人每天工作量是固定的,试问小明独做完成这项工程需要多少天?

3. 用L表示所有被3除余1的全体正整数。如果L中的数(1不算)除1及它本身以外,不能被L的任何数整除,称此数为“L—质数”,请问第8个“L—质数”是什么?

4. 在平面上有许多个圆,每一个圆都被两条互相垂直的直径分成四部分,每一部分涂上红色、黄色或蓝色,任何两个圆,无论怎样在平面上旋转都互不相同,请问这样的三种颜色都有的圆最多有几个?

5.求满足下列条件的最大正整数是多少? (a)这个数的所有数字都不同;

(b)这个数任意两个相邻的数字所构成的两位数总可被17或23整除。

6. 三位学生参加体育竞赛,竞赛至少有两个项目,每位学生都需参加所有的项目。任何一个项目,第二名的学生比第三名的学生得分多,但比

奥林匹克竞赛题

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第二届保良局(香港)国际 小学数学竞赛(1998.7)

队际赛试卷

1.在下面数列中,请问第1998个数是什么?

1,-2,2,-3,3,-3,4,-4,4,-4,5,-5,5,-5,5,-6,6,-6,6,-6,6,?。

2.有一项工程,小明先独做30天,接着小华继续独做5天,以后,他们两人合做10天才完成这项工程。同样的工程,如果由小明和小华合做,只需20天便可完成。假设小明和小华每人每天工作量是固定的,试问小明独做完成这项工程需要多少天?

3. 用L表示所有被3除余1的全体正整数。如果L中的数(1不算)除1及它本身以外,不能被L的任何数整除,称此数为“L—质数”,请问第8个“L—质数”是什么?

4. 在平面上有许多个圆,每一个圆都被两条互相垂直的直径分成四部分,每一部分涂上红色、黄色或蓝色,任何两个圆,无论怎样在平面上旋转都互不相同,请问这样的三种颜色都有的圆最多有几个?

5.求满足下列条件的最大正整数是多少? (a)这个数的所有数字都不同;

(b)这个数任意两个相邻的数字所构成的两位数总可被17或23整除。

6. 三位学生参加体育竞赛,竞赛至少有两个项目,每位学生都需参加所有的项目。任何一个项目,第二名的学生比第三名的学生得分多,但比

数学奥林匹克高中训练题(21)及答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学奥林匹克高中训练题

数学奥林匹克高中训练题(21)

第一试

一、选择题(本题满分36分,每小题6分) 1.(训练题26)z1 关系为(B).

(A)z1 z2 (B)z1 z2 (C)z1 z2 (D)不能比较大小 2.(训练题26)已知函数y 2x在[a,b](a b)上的值域为[0,2],则点(a,b)的轨迹为图中的(A).

(A)线段AB,BC (B)线段AB,OC (C)线段OA,BC (D)线段OA,OC

2

2

11cos isin cos isin

的 ,z2

1 cos isin 1 cos isin 1 cos isin 1 cos isin

2

3.(训练题26)设三角形三个内角的对边分别为a,b,c,如果a b(b c),b c(c a),那么,下列等式中不成立的是(D).

1111

(C)cosC cosB cosA (D)sinA2 sinB2 sinC2 2 abc2

11

4.(训练题26)与三角式2(cos2 cos )(cos4 cos3 cos )恒等的是(A).

22

1111

(A)cos

奥林匹克格言,关于奥林匹克的格言警句大全

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

篇一:奥林匹克格言

奥林匹克格言(Olympic Motto),又称奥林匹克口号或奥林匹克座右铭,是奥林匹克运动宗旨之一。其内容是:“更快、更高、更强”(英文:“Faster,Higher,Stronger”,拉丁文:“Citius,Altius,Fortius”)。

“更快、更高、更强”的内涵是非常丰富的。它充分表达了奥林匹克运动不断进取、永不满足的奋斗精神和不畏艰险、敢攀高峰的拼搏精神。在比赛场上,面对强手,发扬勇往直前的大无畏精神,敢于斗争,敢于胜利。对自己则是永不满足,不断战胜自己,超越自己,实现新的目标,达到新的境界。对自然要敢于征服,克服大自然给人类带来的各种各样的限制,挣脱自然对我们的束缚而取得更大的自由。

顾拜旦本人在推崇“更快、更高、更强”的同时,又大力主张把“团结、和平、进步”作为奥林匹克运动所追求的最根本的目标。“团结、友谊、和平、进步”现今已不仅是奥林匹克运动以及世界体坛的宗旨,而_日还成了全人类所需要、向往和追求的共同目标。

信念

“参与比取胜更重要”是奥林匹克运动广为流传的名言,是奥林匹克的信念。这是顾拜旦于1908年7月24日,在伦敦举行第4届奥运会期间英国政府所举行的招待宴会上发表重要讲话时,所引用在圣保罗组织的运动员颁

2016国际数学奥林匹克试题

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

11K.® n /BCF¥, B´ .3 CFþ :A,¦ FA=FB,…F3:AÚC m. :D,¦ DA=DC,…AC´∠DAB S ²© . :E,¦ EA=ED,…AD´∠EAC S ²© . M´ ãCF ¥:. :X¦ AMXE´ ²1o>/(ùpAM EX,AE MX).y²: BD,FXÚMEn :.

12K.(½¤k ên,¦ 3 Ün×n L z ¥W\i1I,M,O ,÷ve ^ :

3z 19z ¥,Tkn© W\i1I,n© W\i1M,n© W\i1O;¿…

3z^é þ,eTé þ