圆和圆的位置关系教案
“圆和圆的位置关系教案”相关的资料有哪些?“圆和圆的位置关系教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆和圆的位置关系教案”相关范文大全或资料大全,欢迎大家分享。
《圆和圆的位置关系》教学设计
《圆和圆的位置关系》教学设计
一、教学分析
(一)教学内容分析
《圆和圆的位置关系》是人教实验版九年级上第二十章第二部分第三节的学习内容,之前学习了点和圆的位置关系,以及直线和圆的位置关系.本节在此基础上进一步研究平面上两圆的位置关系,它是学生对圆的知识应用的基础,也为今后学习解析几何、立体几何打下坚实的基础.因此本节课的内容对知识起到了承上启下的作用. 学生亲自动手实践,自主探究圆和圆的位置关系,观察分析,猜想验证,完成从感性到理性的发生发展的认知过程.然后知识遵循了从实践走向数学,从数学走向生活的原则,让学生学以致用,把数学知识与现实生活紧密相联.为此,我把探索并了解圆和圆的位置关系作为教学重点. (二)教学对象分析
九年级学生对圆有一定的认识,但对圆的相关性质掌握较少,对知识的转化能力较差,基于知识较抽象,学生不易理解,我将采用引导探究→师生合作为主的教学方法,重在要学生参与,主动探究,增加解决实际问题的能力.让学生动起来,主动去发现并解决问题,让学生在整个学习过程中围绕主动实践→猜想结论→运用解题的学法学习. (三)教学环境分析
针对学生面临的问题和本课的重难点,我决定运用文字、图片、几何画板等多媒体资源进行辅助教学,多媒体教学具有信
《必修2:圆与圆的位置关系》教案
适用学科
高中数学
适用年级
适用区域 苏教版区域
课时时长(分钟)
知识点 圆和圆的位置关系的判定
教学目标 掌握圆和圆的五种位置关系
高二 2 课时
教学重点 判定两圆位置关系
教学难点 根据两圆位置关系求参数
【教学建议】
在学习了“直线和圆”之后,再来学习本节内容,学生会有一种熟悉的感觉,如在研究 两个圆的位置关系时,通过画图就可以得到。而在解题方法上,依然可以采用数形结合的方 法,而有的问题则必须通过代数方法才可以获得准确的解,所以对不同的题目要判断用什么 方法是最佳的。对于五种关系的代数判断方法,也应该让学生在理解的基础上去记忆对应的 代数形式。 【知识导图】
教学过程
一、导入
两个圆的位置关系有外离、外切、相交、内切、内含 如何判断圆与圆的位置关系
方法一(几何法):设两圆连心的距离为 d ,两圆的半径为 R、r,则 ①两圆外离 d>R+r 没有公共点 ②两圆外切 d=R+r 有唯一的公共点
③两圆相交 R-r
7直线和圆的位置关系
(五)直线和圆的位置关系
一、知识回顾
1、直线和圆的三种位置关系:
(1)如果直线和圆有两个公共点,那么就说直线和圆 .
(2)如果直线和圆有一个公共点,那么就说直线和圆 ,这条直线叫的 ,这个点叫做圆的 .
(3)如果直线和圆没有公共点,那么就说直线和圆 .这条直线叫做圆的 .
2、直线和圆的三种位置关系:
设⊙O的半径为r,圆心O到直线l的距离为d,则有: d>r d=r d<r 3、切线的的判定与性质:
(1)切线判定定理:经过半径的 ,并且 的直线是圆的切线. (2)圆的切线垂直于 .
二、例题讲解
例1、填空题:
(1)如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=
(2)如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=
(3)如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则
例2、如图,AB为⊙O直径,
7直线和圆的位置关系
(五)直线和圆的位置关系
一、知识回顾
1、直线和圆的三种位置关系:
(1)如果直线和圆有两个公共点,那么就说直线和圆 .
(2)如果直线和圆有一个公共点,那么就说直线和圆 ,这条直线叫的 ,这个点叫做圆的 .
(3)如果直线和圆没有公共点,那么就说直线和圆 .这条直线叫做圆的 .
2、直线和圆的三种位置关系:
设⊙O的半径为r,圆心O到直线l的距离为d,则有: d>r d=r d<r 3、切线的的判定与性质:
(1)切线判定定理:经过半径的 ,并且 的直线是圆的切线. (2)圆的切线垂直于 .
二、例题讲解
例1、填空题:
(1)如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=
(2)如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=
(3)如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则
例2、如图,AB为⊙O直径,
7直线和圆的位置关系
(五)直线和圆的位置关系
一、知识回顾
1、直线和圆的三种位置关系:
(1)如果直线和圆有两个公共点,那么就说直线和圆 .
(2)如果直线和圆有一个公共点,那么就说直线和圆 ,这条直线叫的 ,这个点叫做圆的 .
(3)如果直线和圆没有公共点,那么就说直线和圆 .这条直线叫做圆的 .
2、直线和圆的三种位置关系:
设⊙O的半径为r,圆心O到直线l的距离为d,则有: d>r d=r d<r 3、切线的的判定与性质:
(1)切线判定定理:经过半径的 ,并且 的直线是圆的切线. (2)圆的切线垂直于 .
二、例题讲解
例1、填空题:
(1)如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=
(2)如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=
(3)如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则
例2、如图,AB为⊙O直径,
直线和圆的位置关系说课稿
课题:直线和圆的位置关系 教材分析 圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用. 学情分析 初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力。根据他们的特点,联系生活实际中的问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,通过对研究过程的反思,进一步强化对分类和化归思想的认识。 教法设计 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,通过观察采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。 1,学生观察照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学
点与圆 圆与圆 直线与圆的位置关系 -
点与圆、圆与圆、直线与圆的位置关系
姓名: 日期: 指导老师:
知识点一:点与圆的位置关系
平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r?点P在⊙O______;
d=r?点P在⊙O______;d 1、 ⊙O的半径为5,O点到P点的距离为6,则点P( ) A. 在⊙O内 B. 在⊙O外 C. 在⊙O上 D. 不能确定 2、 若△ABC的外接圆的圆心在△ABC的内部,则△ABC是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法确定 3、直角三角形的两条直角边分别是12cm、5cm,这个三角形的外接圆的半径是( ). A.5cm B.12cm C.13cm D.6.5cm 4、若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),你认为点P的位置为( ) A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不能确定 5、Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,?那么斜边中点D与⊙O的位置关 系是( ) A.点D在⊙A外
点与圆、直线与圆、圆与圆的位置关系
点与圆、直线与圆、圆与圆的位置关系整合
教学目标 (一)教学知识点
1.进一步理解和掌握点与圆、直线与圆、圆与圆的位置关系.
2.不同位置关系所体现的数量关系,为以后与圆有关的计算、证明做铺垫. (二)能力训练要求
1.经历探索点与圆、直线与圆、圆与圆位置关系的过程,培养学生的探索能力. 2.通过观察得出“圆心到直线的距离d和半径r的数量关系”的对应与等价,从而实现位置关系与数量关系的相互转化.
(三)情感与价值观要求
通过探索点与圆、直线与圆、圆与圆位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
教学重点
经历探索点与圆、直线与圆、圆与圆位置关系的过程.理解点与圆、直线与圆、圆与圆的位置关系.掌握其对应与等价。
教学难点:经历探索点与圆、直线与圆、圆与圆位置关系的过程,归纳总结出三种位置关系下的对应与等价.
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?通过观看ppt课件,谈谈射击是如何计算成绩的?
[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等
直线和圆的位置关系的培优
word格式整理版
直线与圆的位置关系的培优
一.切线性质、切线判定(2种方法的分析与比较) 1、如图,已知在△ABC中,∠ACB=90°,BC是⊙O的直径,AB交⊙O于D,E是AC上一点。 (1)、若E是AC的中点,则DE是⊙O的切线,为什么? (2)、若DE是⊙O的切线,则E是AC的中点,为什么? B D C E A
2. 如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?
3.已知:如图,AB是⊙O的直径,BC是⊙O的切线,连AC交⊙O于D,过D作⊙O的切线
EF,交BC于E点.求证:OE//AC.
BEODCFA切线相关拓展
二. 三角形与圆相切(内切 RT切 三切 双切) 1. 已知正三角形的边长为6,则该三角形的外接圆半径,内切圆的半径各为____________。
范文范例 学习指导
word格式整理版
2、三角形的三边长分别为5㎝、12㎝、13㎝,则三角形的内切圆的面积为______
九年级圆和圆的位置关系经典习题
圆和圆的位置关系 圆和圆的位置关系
如下图,是几种圆和圆的位置关系,设两圆圆心距为d、两圆半径分别为R和r,则由图可得:
外离 外切 相交 内切 内含 两圆相外离时,d R+r;两圆没有交点 两圆相外切时,d R+r;两圆只有一个交点 两圆相内切时,d R- r;两圆只有一个交点 两圆相交时, R-r d R+r;两圆有两个交点 两圆相内含时, 0 d R-r;两圆没有交点 精选习 一、填空题:
1.已知两圆半径分别为8、6,若两圆内切,则圆心距为______;若两圆外切,则圆心距为___. 2.已知两圆的圆心距d=8,两圆的半径长是方程x-8x+1=0的两根,则这两圆的位置关系是______.
3.圆心都在y轴上的两圆⊙O1、⊙O2,⊙O1的半径为5,⊙O2的半径为1,O1 的坐标为(0,-1),O2的坐标为(0,3),则两圆⊙O1
与⊙O2的位置关系是________.
4.⊙O1和⊙O2交于A、B两点,且⊙O1经过点O,若∠AO1B=90°,那么∠AO2B 的度数是__.