中点四边形与原四边形对角线关系

“中点四边形与原四边形对角线关系”相关的资料有哪些?“中点四边形与原四边形对角线关系”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中点四边形与原四边形对角线关系”相关范文大全或资料大全,欢迎大家分享。

观察对角线,浅谈中点四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

观察对角线,浅探中点四边形

通过对华东师大版九年级《数学》下册中的《几何回顾》章节后的课题学习——中点四边形的探究活动,使我受益匪浅,加深了对平行四边形、矩形、菱形、正方形的判定与性质,三角形的中位线的性质以及相似三角形的性质理解和掌握,并能够灵活运用。下面结合自己的探究过程,展示我对中点四边形的形状、周长及其面积的简单地探究,与同学们学习交流。

一.准确判断中点四边形的形状 1.任意四边形

如图1,已知:任意四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA中点,连接EF,FG,GH,HE.求证:四边形EFGH是平行四边形.

1分析 方法一:连接BD.根据三角形中位线性质定理得,EH//BD,EH=BD;21同理FG//BD,FG?BD.得EH//FG,EF?FG,所以四边形EFGH是平行四边形.2 方法二:连接AC,BD.根据三角形中位线性质定理得,EH//BD,FG//BD,得EH//FG,同理EF//HG,所以四边形EFGH是平行四边形.11 方法三:连接AC,BD.根据三角形中位线性质定理得,EH=BD,FG?BD,22得EH=FG,同理EF=HG.所以四边形EFGH是平行四边形. 证明

观察对角线,浅谈中点四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

观察对角线,浅探中点四边形

通过对华东师大版九年级《数学》下册中的《几何回顾》章节后的课题学习——中点四边形的探究活动,使我受益匪浅,加深了对平行四边形、矩形、菱形、正方形的判定与性质,三角形的中位线的性质以及相似三角形的性质理解和掌握,并能够灵活运用。下面结合自己的探究过程,展示我对中点四边形的形状、周长及其面积的简单地探究,与同学们学习交流。

一.准确判断中点四边形的形状 1.任意四边形

如图1,已知:任意四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA中点,连接EF,FG,GH,HE.求证:四边形EFGH是平行四边形.

1分析 方法一:连接BD.根据三角形中位线性质定理得,EH//BD,EH=BD;21同理FG//BD,FG?BD.得EH//FG,EF?FG,所以四边形EFGH是平行四边形.2 方法二:连接AC,BD.根据三角形中位线性质定理得,EH//BD,FG//BD,得EH//FG,同理EF//HG,所以四边形EFGH是平行四边形.11 方法三:连接AC,BD.根据三角形中位线性质定理得,EH=BD,FG?BD,22得EH=FG,同理EF=HG.所以四边形EFGH是平行四边形. 证明

中点四边形与原四边形的关系

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

中点四边形与原四边形的关系

烟台市祥和中学初春晓2013年7月18日 08:54浏览:89评论:7鲜花:0专家浏览:0指导教师浏览:8

指导教师 刘永渤于13-7-18 09:07推荐充分利用几何画板来进行探究,让学生在小组合作中进行学习,现代教育技术运用得比较好,课标理念运用恰当!

学生小组讨论,学生代表发言。(取原四边形的四边的中点,顺次连接得到的新四边形就满足要求)

像这种顺次连接四边形四边中点的四边形,我们成为中点四边形。那么任意四边形的中点四边形是平行四边形吗?它其 中蕴含着怎样的数学道理?你能用你学过的数学知识解释吗?

【任务】

1

小组合作,探索为什么任意四边形的中点四边形是平行四边形?

2.通过合作探索,找到决定中点四边形形状的因素是什么? 3. 中点四边形除了是平行四边形外,添加什么条件能使它成为菱形,矩形,正方形? 4. 我们学过的特殊四边形的中点四边形都是什么形状?

【过程】

活动准备:

小组合作学习参考下列步骤,并提出修改意见,确定本组研究性学习的具体步骤。

活动1.探索任意四边形的中点四边形是平行四边形的原因 建议步骤:

(1) 个人独立完成:在练习本上画出一个任意四边形的中点四边形,并观察你画出的中点四边形是否为平行四边形?

(2) 首先个人

十五、四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

十五、四边形

水平预测

(完成时间90分钟)

双基型

**1.若一个十边形的每个内角都相等,求这个十边形内角的度数。

0**2.一个多边形的内角和与某一个外角的总和等于1350,求这个多边形的边数。

**3.如图15-1,在ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于点G、H,请判

断下列结论:①BE=DF;②AG=GH=HC;③EG=1BG;④SΔABE=3SΔAGE,其中正确的结论有( )。 2

(A)1个 (B)2个 (C)3个 (D)4个

**4.如图15-2,在ΔABC中,AB=AC,E为AB的中点,以点E为圆心、BE为半径画弧交BC于点

D,连结ED,并延长ED到点F,使DF=DE,连结FC。求证:∠F=∠A。

**5.如图15-3,ABCD的四个内角的平分线相交于E、F、G、H。求证:四边形EFGH为矩形。

纵向型

***6.如图15-4,在ΔABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于点E,AF

⊥CF于点F,直线EF分别交AB、AC于点M、N。求证:(1)四边形AECF为矩形;(2)MN=1BC。

2

***7. 如图15-5,在矩形ABCD中,AB=16,BC=8,将矩形

十五、四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

十五、四边形

水平预测

(完成时间90分钟)

双基型

**1.若一个十边形的每个内角都相等,求这个十边形内角的度数。

0**2.一个多边形的内角和与某一个外角的总和等于1350,求这个多边形的边数。

**3.如图15-1,在ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于点G、H,请判

断下列结论:①BE=DF;②AG=GH=HC;③EG=1BG;④SΔABE=3SΔAGE,其中正确的结论有( )。 2

(A)1个 (B)2个 (C)3个 (D)4个

**4.如图15-2,在ΔABC中,AB=AC,E为AB的中点,以点E为圆心、BE为半径画弧交BC于点

D,连结ED,并延长ED到点F,使DF=DE,连结FC。求证:∠F=∠A。

**5.如图15-3,ABCD的四个内角的平分线相交于E、F、G、H。求证:四边形EFGH为矩形。

纵向型

***6.如图15-4,在ΔABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于点E,AF

⊥CF于点F,直线EF分别交AB、AC于点M、N。求证:(1)四边形AECF为矩形;(2)MN=1BC。

2

***7. 如图15-5,在矩形ABCD中,AB=16,BC=8,将矩形

四边形的认识

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

篇一:四边形的认识教学反思

《四边形的认识》教学反思

本课是在学生已经学习了三角形,认识了正方形和长方形的基础上进行的,主要是让学生感受不同形状的四边形,并掌握其特征。为了使学生能轻松愉快地学习并掌握本节课的知识,我主要从以下几个方面 考虑、设计:

一、从已有经验开始,直接引入,尝试判断。

在课的开始,我让学生看看课件中的课题,让学生说说对四边形的认识,了解学生脑海中对四边形已有的认。之后出示课本的四边形图形,让每位学生逐个动手判断,并说出不是四边形的图形为什么不是,从而让学生用自己已有的经验基础归纳四边形的特点,对四边形的认识有进一步的提升。这里,注重对学生已有经验的应用和提升,以学生的基础为起点,在此基础上开展学习,逐步提高。

二、在多次活动中辨析,积极参与,深入了解。

小学生具有好奇,好动的特点,而数学知识本身又是枯燥,抽象的 ,要使掌握数学知识,就必须符合儿童的自身的特点。在这节课中,我让学生通过找一找,说一说,分一分,画一画等多种活动中斩获新知,使学生整节课都处于主动积极的状态中,不仅培养了学生的动手能力和观察能力,而且还使学生养成了善于思考,乐于动脑的好习惯。学生通过对四边形的判断、把四边形分类的活动,进一步感受到了四边形的细微差别之处,有

中点四边形专题训练(苏华强供稿)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

中点四边形专题训练(苏华强供稿)

中点四边形专题训练(苏华强供稿)

例1.在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,顺次连结EF,FG,GH,HE。 (1)请判断四边形EFGH的形状,并给予证明;

(2)试添加一个条件,使四边形EFGH是菱形,并说明理由。

例2、如图,在四边形ABC中,AB=AD,CB=CD,点M,N,P,Q分别是AB,BC,CD,DA的中点,求证:四边形MNPQ是矩形.

小结:中点四边形:

对角线 的四边形的中点四边形是菱形 对角线 的四边形的中点四边形是矩形 对角线 的四边形的中点四边形是正方形 对角线 的四边形的中点四边形是平行四边形

(1) 顺次连接四边形各边中点所得的四边形是 . (2) 顺次连接平行四边形各边中点所得的四边形是 . (3) 顺次连接矩形各边中点所得的四边形是 . (4) 顺次连接菱形各边中点所得的四边形是 . (5) 顺次连接正方形各边中点所得的四边形是 .

中点

平等四边形培优(二)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

对平行四边形相关知识的拓展应用,值得一看

平等四边形培优(二)

例1. E为矩形ABCD的边CD上的一点,且

例2.矩形纸片ABCD,AB=8,BC=12,点M在BC上,且CM=4,现将纸片折叠,使点D落在M处,折痕为EF,求AE的长。

例3.点P是矩形ABCD的边AD的一个动点,矩形的两条边AB,BC的长分别为3和4.那么P到两条对角线AC,BD的距离和是多少?

例4.菱形较在角是较小角的3倍,高为4,求菱形的面积。

例5.菱形ABCD中,E,F分别为BC,CD上的点,∠B的度数。

例6.如图,M是等腰三角形ABC底边BC上的中点,DM⊥ME⊥AC,DG⊥AC,求证:四边形MEND是菱形。

对平行四边形相关知识的拓展应用,值得一看

例7.在四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD

1)求证:四边形AECD是菱形。

2)若点E是AB的中点,试判断△ABC的形状。

例8.

在正方形ABCD中,E,F分别在AD,DC上,且DE=DF,BM⊥EF于M.求证:ME=MF

例9.在边长为a的正方形ABCD中,

E,G分别为AB,BC边的中点,且AE⊥EF,CF为正方

形的外角∠DCH的平分线。

求证:1

)∠BAE=∠

FEC

2)△

AGE≌△ECF 3)求△AEF的面积

《认识四边形》教学反思

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】
《认识四边形》教学反思

  观察是学生建立空间观念的基础,最初对图形的认识就是由观察开始的,所以在四边形的认识过程中我安排了一系列的观察活动。因为已经有认识常见的简单平面图形的经验,有一定的空间与几何的基础,所以本节课学生接受新知相对来说较快。

  本节课在以前的基础上对学生的能力要求又有一定的提升,要求学生能够更加仔细地观察,对图形的认识更全面。所以,在课堂上我有意识地去引导学生在观察平面图形的时候注意图形构成的几大要素,发现同类图形的基本特征。

  课堂初,我让学生自己画出自己猜测的四边形的样子,展示介绍自己画出的四边形,我将他们画出的一些四边形贴在黑板上,相互观察判断,学生根据已有经验能很快判断出给出的图形哪些是四边形,哪些不是,但是发现有学生对立体图形和平面图形的表述不清楚甚至混淆,于是,我在课堂上临时加入了四边形是平面图形还是立体图形的讲解环节。这一点,尽管教材上有显示,但自己课前没有预设到,备课还不够细致。找四边形的普遍特征这一环节,教材中没有给出四边形的定义,所以我让学生仔细观察寻找它们都有什么共同的特点,用自己的语言描述什么样的图形是四边形,并在这个过程中让学生初步感知四边形的特征:有四条边、四个角。此时学生对四边形的特征表象认识是

第16章 四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第十六册第十六章导学案 执笔人:董学燕 使用该导学案的时间是20 年 月 日 星期

16.1多边形(第1课时)

【学习目标】了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;并了解正多边

形概念.

【学法指导】类比三角形学习多边形. 【学习过程】 一、情景引入

1.你能从下图中找出几个由一些线段围成的图形吗?这些线段围成的图形有何特点?

二、新课学习

1.你能仿照三角形的定义给多边形定义吗?

由n条线段____________________组成的平面图形称为n多边形,又称为多边形. 2.多边形的表示: A F

A D E

E B

A

B C

D

D

C B C ______________ __________________ _________________ 3.四边形相关定义: ( )

D