吸附动力学实验
“吸附动力学实验”相关的资料有哪些?“吸附动力学实验”相关的范文有哪些?怎么写?下面是小编为您精心整理的“吸附动力学实验”相关范文大全或资料大全,欢迎大家分享。
吸附热力学及动力学的研究
吸附热力学及动力学的研究
摘要:
杂乱无章的实验数据, 不经过数学处理, 得不到能够描述它们的模型,其本身无论在科学理论上,还是在应用技术上都没有太大的实际意义。本文综述了近些年来在液固吸附理论研究领域对吸附等温线,吸附热力学及吸附动力学的研究进展。论述5 种类型吸附等温线,总结了热力学中△H、△G、△S的几种求算方法,以及5种吸附动力学的模型,从而,为吸附实验数据的处理和模型优选,,提供依据。
关键字:吸附 等温曲线 热力学 动力学
1吸附等温曲线
吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。在一定温度下, 分离物质在液相和固相中的浓度关系可用吸附方程式来表示。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等, 而宏观地总括这些特性的是吸附等温线.[1]
1.1Langmuir 型分子吸附模型
Langmuir 吸附模型是应用最为广泛的分子吸附模型,Langmuir 型分子吸附模型[2]就是在Langmuir 吸附模型的基础上,研究者就Langmuir 吸附模型的局限性进行了改进、发展,形成了一系列的分子吸附模型。
1. 1.1 Langmuir 分子吸附模型
Lan
吸附热力学及动力学的研究
吸附热力学及动力学的研究
摘要:
杂乱无章的实验数据, 不经过数学处理, 得不到能够描述它们的模型,其本身无论在科学理论上,还是在应用技术上都没有太大的实际意义。本文综述了近些年来在液固吸附理论研究领域对吸附等温线,吸附热力学及吸附动力学的研究进展。论述5 种类型吸附等温线,总结了热力学中△H、△G、△S的几种求算方法,以及5种吸附动力学的模型,从而,为吸附实验数据的处理和模型优选,,提供依据。
关键字:吸附 等温曲线 热力学 动力学
1吸附等温曲线
吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。在一定温度下, 分离物质在液相和固相中的浓度关系可用吸附方程式来表示。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等, 而宏观地总括这些特性的是吸附等温线.[1]
1.1Langmuir 型分子吸附模型
Langmuir 吸附模型是应用最为广泛的分子吸附模型,Langmuir 型分子吸附模型[2]就是在Langmuir 吸附模型的基础上,研究者就Langmuir 吸附模型的局限性进行了改进、发展,形成了一系列的分子吸附模型。
1. 1.1 Langmuir 分子吸附模型
Lan
吸附热力学及动力学的研究
吸附热力学及动力学的研究
摘要:
杂乱无章的实验数据, 不经过数学处理, 得不到能够描述它们的模型,其本身无论在科学理论上,还是在应用技术上都没有太大的实际意义。本文综述了近些年来在液固吸附理论研究领域对吸附等温线,吸附热力学及吸附动力学的研究进展。论述5 种类型吸附等温线,总结了热力学中△H、△G、△S的几种求算方法,以及5种吸附动力学的模型,从而,为吸附实验数据的处理和模型优选,,提供依据。
关键字:吸附 等温曲线 热力学 动力学
1吸附等温曲线
吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。在一定温度下, 分离物质在液相和固相中的浓度关系可用吸附方程式来表示。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等, 而宏观地总括这些特性的是吸附等温线.[1]
1.1Langmuir 型分子吸附模型
Langmuir 吸附模型是应用最为广泛的分子吸附模型,Langmuir 型分子吸附模型[2]就是在Langmuir 吸附模型的基础上,研究者就Langmuir 吸附模型的局限性进行了改进、发展,形成了一系列的分子吸附模型。
1. 1.1 Langmuir 分子吸附模型
Lan
吸附热力学及动力学的研究
吸附热力学及动力学的研究
摘要:
杂乱无章的实验数据, 不经过数学处理, 得不到能够描述它们的模型,其本身无论在科学理论上,还是在应用技术上都没有太大的实际意义。本文综述了近些年来在液固吸附理论研究领域对吸附等温线,吸附热力学及吸附动力学的研究进展。论述5 种类型吸附等温线,总结了热力学中△H、△G、△S的几种求算方法,以及5种吸附动力学的模型,从而,为吸附实验数据的处理和模型优选,,提供依据。
关键字:吸附 等温曲线 热力学 动力学
1吸附等温曲线
吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。在一定温度下, 分离物质在液相和固相中的浓度关系可用吸附方程式来表示。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等, 而宏观地总括这些特性的是吸附等温线.[1]
1.1Langmuir 型分子吸附模型
Langmuir 吸附模型是应用最为广泛的分子吸附模型,Langmuir 型分子吸附模型[2]就是在Langmuir 吸附模型的基础上,研究者就Langmuir 吸附模型的局限性进行了改进、发展,形成了一系列的分子吸附模型。
1. 1.1 Langmuir 分子吸附模型
Lan
转动力学实验
转动力学实验(一)
【目的】
A.了解转动力学中角加速度、角动量与能量不灭之意义。 B.测量各种不同形状物体之转动惯量。
【仪器】
纸箱内:A型底座(转动轴、光电管、滑轮支架已固定在上面)、铝制长条转动平台(含黑色立
杆)、圆盘、圆环、光电定时器、变压器、游标卡尺。
塑料袋内:黑色方形重锤(含螺丝螺帽)×2、金色50g圆形砝码×2、stop screws(小黑圆螺
丝+方形螺帽)×2、挂钩、L型六角板手、布尺。
※ 注意:此仪器有许多小零件,请小心保管使用,勿使其松脱或遗落。实验前后清点请务必确实,以避免造成下个使用者困扰
【原理】
一质量为m的质点对一固定轴旋转,定义r为轴到质点的距离,转速或角速度w?切线速度v?rw,若此质点在与r垂直方向受力F,则此质点所受力矩
dvdw????r?F?r?m?sin90??mr2
dtdtdw定义转动惯量I?mr2,角加速度??
dt??则(1)式可写为??I?
d?,dt(1)
(2)
即一转动物体之角加速度大小与所受力矩成正比,其比例常数I表物体转动之难易程度。 若转动的物体是由许多质点组合,则
I??miri
2i?1n(3)
若转动的物体是有大小而非质点,则
I??r2dm
(4)
?dw
酶促反应动力学实验
酶动力学综合实验
实验(一)——碱性磷酸酶Km值的测定
【目的要求】
1.了解底物浓度对酶促反应速度的影响
2.了解米氏方程、Km值的物理意义及双倒数作图求Km值的方法。 【实验原理】 1、碱性磷酸酶:
碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。 2、米氏方程:
Michaelis-Menten 在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即:
错误!未找到引用源。 (1)
式中:v表示酶促反应速度,
错误!未找到引用源。表示酶促反应最大速度, [S]表示底物浓度,
错误!未找到引用源。表示米氏常数。
3、 错误!未找到引用源。值的测定主要采用图解法,有以下四种: ①双曲线作图法(图1-1,a) 根据公式(1),以v对[s]作图,此时1/2错误!未找到引用源。时的底物浓度[s]值即为Km值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测错误!
酶促反应动力学实验
酶动力学综合实验
实验(一)——碱性磷酸酶Km值的测定
【目的要求】
1.了解底物浓度对酶促反应速度的影响
2.了解米氏方程、Km值的物理意义及双倒数作图求Km值的方法。 【实验原理】 1、碱性磷酸酶:
碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多。其次为肾脏、骨骼、肠和胎盘等组织。但它不是单一的酶,而是一组同功酶。本实验用的碱性磷酸酶是从大肠杆菌中提取的。 2、米氏方程:
Michaelis-Menten 在研究底物浓度与酶促反应速度的定量关系时,导出了酶促反应动力学的基本公式,即:
错误!未找到引用源。 (1)
式中:v表示酶促反应速度,
错误!未找到引用源。表示酶促反应最大速度, [S]表示底物浓度,
错误!未找到引用源。表示米氏常数。
3、 错误!未找到引用源。值的测定主要采用图解法,有以下四种: ①双曲线作图法(图1-1,a) 根据公式(1),以v对[s]作图,此时1/2错误!未找到引用源。时的底物浓度[s]值即为Km值,以克分子浓度(M)表示。这种方法实际上很少采用,因为在实验条件下的底物浓度很难使酶达到饱和。实测错误!
动力学模拟实验详解
分子平衡与动态行为的动力学模拟实验详解
吴景恒
实验目的:
(1)掌握Hyperchem中的分子建模方法
(2)掌握运用分子力学进行几何优化的方法,能正确设置力场参数及几何优化参数
(3)掌握分子动力学、Langevin动力学及Monte Carlo模拟方法, 能正确设置模拟参数
(4)通过动力学或Monte Carlo模拟,获取低能量的结构和热力学参数
实验注意:
(1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格
(2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作
(3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片
(4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备!
Hyperchem使用介绍:
本次实验用到的工具:
Draw:描绘分子工具,在工作区单击画出原子,拖拽画出成键原子,在分子键上单击更改成键类型,双击会出现如下元素周期表用于选择不同原
药物代谢动力学实验讲义
实验一 药酶诱导剂及抑制剂对 戊巴比妥钠催眠作用的影响
【目的】
以戊巴比妥钠催眠时间作为肝药酶体内活性指标,观察苯巴比妥及氯霉素对戊巴比妥钠催眠作用的影响,从而了解它们对肝药酶的诱导及抑制作用。
【原理】
苯巴比妥为肝药酶诱导剂,可诱导肝药酶活性,使戊巴比妥钠在肝微粒体的氧化代谢加速,药物浓度降低,表现为戊巴比妥钠药理作用减弱,即催眠潜伏期延长,睡眠持续时间缩短。而氯霉素则为肝药酶抑制剂,能抑制肝药酶活性,导致戊巴比妥钠药理作用增强,即催眠潜伏期缩短,睡眠持续时间延长。
【动物】
小白鼠8只,18~22g
【药品】
生理盐水、0.75%苯巴比妥钠溶液、0.5%氯霉素溶液、0.5%戊巴比妥钠溶液
【器材】
天平、鼠笼、秒表、注射器1 ml×4、5号针头×4
【方法与步骤】
一、药酶诱导剂对药物作用的影响
1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0.75%苯巴比妥钠溶液0.1 ml/10g,乙组小鼠腹腔注射生理盐水0.1 ml/10g,每天1次,共2天。
2、于第三天,给各小鼠腹腔注射0.5%戊巴比妥钠溶液0.1 ml/10g,观察给药后小鼠的反应。记录给药时
动力学模拟实验详解
分子平衡与动态行为的动力学模拟实验详解
吴景恒
实验目的:
(1)掌握Hyperchem中的分子建模方法
(2)掌握运用分子力学进行几何优化的方法,能正确设置力场参数及几何优化参数
(3)掌握分子动力学、Langevin动力学及Monte Carlo模拟方法, 能正确设置模拟参数
(4)通过动力学或Monte Carlo模拟,获取低能量的结构和热力学参数
实验注意:
(1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格
(2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作
(3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片
(4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备!
Hyperchem使用介绍:
本次实验用到的工具:
Draw:描绘分子工具,在工作区单击画出原子,拖拽画出成键原子,在分子键上单击更改成键类型,双击会出现如下元素周期表用于选择不同原