翅片管换热器设计计算
“翅片管换热器设计计算”相关的资料有哪些?“翅片管换热器设计计算”相关的范文有哪些?怎么写?下面是小编为您精心整理的“翅片管换热器设计计算”相关范文大全或资料大全,欢迎大家分享。
空调翅片管换热器设计计算
℃℃℃℃
℃
℃
℃
kg/s kJ/kg
kJ/kg
采用平均温差法,首先计算风量和风速,然后据此计算换热器的尺寸,再算出换热器的传热对数平均温差θ
计算:
冷凝器热负荷:
翅片管簇结构参数选择与计算外径*底壁厚*齿高
设计传热管的规格:(内螺纹铜管)
mm mm mm
℃KPa
2112
ln a a m k
a k a t t t t t t θ-=
--
1013.0000
干空气比热容J/(㎏.K )查干空气物理性质表0.0271热导率λf W/(m.K)
0.0000运动粘度
m2/s 1.0950空气平均密度ρf ㎏/m3
1726.0544所需要的风量计算结果m3/h
计算空气侧换热系数
24.0000每个换热器管列数0.7400单管有效长度B m 0.3048单个换热器高度 H m 10.3792换热器总外表面积L m22.1257迎面风速
m/s 5.4333
最小截面流速
m/s
41.0000沿气流方向的肋片长度mm 2.3382当量直径
mm
17.5346长径比
730.1311空气雷诺数Re
查《小型制冷装置设计指导》表3-18、3-19,用插入法得
空气流过平套片管的叉排管簇时空气侧换热系数:
计算制冷剂侧换热系数
翅片效率
203.0000铝的热导率94.9293m a0空气侧
翅片管换热器定制计算与应用
翅片管换热器定制计算与应用
中央空调与其他空调产品不同,由于地理、气候、规模、人群等原因,故客户对中央空调系统的需求差异较大.强调客户的参与并充分满足客户的个性化需求以及有效缩短产品开发周期是企业的一项重要能力.大规模定制于上世纪90年代提出,并开始广泛地、系统地进行理论研究.作为一种全新的生产模式,大规模定制主要是通过灵活性及快速响应来实现产品的多样化和定制化.定制系统可以以接近大规模生产的成本提供范围广阔的产品和服务.
换热器在各行各业有着广泛的应用,对于制冷系统来说,冷凝器、蒸发器是它的心脏部件,空调中常用的翅片管式换热器是一种带翅管式热交换器,是热交换器中的主要换热元件.由于用户环境和需求不同,对翅片管的需求是多样化的.因此,在设计过程中采用模块化的柔性设计,最大程度地满足客户的个性化需求,从而为企业在多变的市场环境中赢得持久的竞争优势有着重要的实际意义[1 3].本文针对这个企业需求的空白,对其定制方法做了相关研究,并初步建立了一个可行的翅片管模块化定制系统.
1 定制要素的选择
空调系统主要由压缩机、换热器(包括冷凝器、蒸发器、空气加热器、表冷器等)、膨胀阀或毛细管、制冷剂等要素构成.对于每种要素,变
中央空调翅片管换热器维护保养方法
中央空调翅片管换热器维护保养方法
中央空调翅片管换热器维护保养方法 中央空调经过长时间运行后空调冷冻水、冷却水系统,制冷主机及风机散热盘片不可避免的出现了水垢、锈蚀、淤泥、细菌、藻类和粉尘问题将直接导致制冷能力减弱,使用寿命缩短、运行可靠性降低、能耗提高导致运行费用增加等。为了节约能源、降低运行成本特制订中央空调系统维护保养计划。
中央空调冷水机组,中央空调水循环管道,中央空调冷却塔部分,中央空调末端风柜部分,中央空调所有控制柜
中央空调翅片管换热器维护保养方法
中央空调冷水机组的维护保养方法
1、中央空调冷水机组正常运行中的维护保养及检查 查压缩机冷冻油的油压及油量,系统探漏(制冷剂),发现漏点及时处理
检查有无不正常的声响、震动及高温
检查冷凝器及冷却器的温度、压力
检查各种阀门是否正常
检查冷水机出入水的温度及压力
检查主电路上接线端子并有无松动压实
中央空调翅片管换热器维护保养方法
检查电气控制部分有无异常;检查各仪表、控制器的
状态
检查机组润滑系统机油是否充足
检查制冷设备安全保护装置整定值
检查压缩机冷冻油的油压及油量,必要时进行冷冻油
更换及补充压缩机电机绝缘情况
检查并收紧电路上的各电线接点
检查制冷系统内是否存在空气,如有则应排放空气
2、中央空调冷凝器蒸发器维
换热器设计计算范例
eaintheaccidentinvestigation,managementandreporting,eachpostshouldbedevelopedunderthissystemspecialistscheck,cleartheexaminations,time,cyclesandotherrelevantregulations.Strengtheningsitesupervisionandexamination,todetectandinvestigateillegalcommand,illegaloperationsandviolationsofoperatingrules.Secondsafetyreferstotheproductionsite,technologymanagement,equipment,facilities,andsooncanleadtoaccidentsrisksexist.1,accordingtotheextentofthesecurityrisks,solvingisdividedintoa,b,andclevelsofdifficulty;A-level:difficult,miningdiffi
换热器计算
第九章 传热过程与换热器
第九章 传热过程分析和换热器计算
在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析得出它们的计算公式。由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。
9-1传热过程分析
在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。
对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式
式中,Q为冷热流体之间的传热热流量,W;F为传热面积,m;?t为热流体与冷流体间的某个平均温差,
o
Q?kF?t, 9-1
2
C;k为传热系数,W/(m2? oC)。在数值上,传热系数等于冷、热流体间温差?t=1 oC、传热面积A=1 m
换热器热力计算
设计说明书
一、热力计算
1、原始数据:
甲醇进口温度 t1’=64.4 ℃?甲醇出口温度?t1”=38℃ 甲醇工作压力 P1=0.04MPa 甲醇流量?G1=1.3×1.986×103kg/h 冷却水进口温度 t2’=32℃ 冷却水出口温度 t2”=42℃ 冷却水工作压力 P2 =0.36MPa 2、定性温度及物性参数
水的定性温度 t2=(t2’+t2”)/2=(32+42)=37℃ 水的密度查物性表得 ρ2=993.25kg/m3 水的比热查物性表得 Cp2=4.174KJ/kg.℃ 水的导热系数查物性表得 λ2=0.629W/m.℃ 水的粘度 μ2=697.76×10-6Pa.s 水的普朗特数查物性表得 Pr2=4.64
甲醇的定性温度 ,甲醇在0.04MP下的沸点温度ti=64.34℃ 冷凝段t1=( t1’+ ti)/2=(64.4+64.34)/2=64.4℃ 冷却段t1c=( t1”+ ti)/2=(64.34+38)/2=51.2℃ 甲醇在冷凝段温度下的物性常数: 密度ρ??2.31kg/m3
比热Cp1=1.42 KJ/kg.℃ 导热系数λ1=0.0169 W/m.℃ 粘度μ1=10.5×10-6 Pa.s 普朗特数
列管式换热器选型设计计算
第一部分 列管式换热器选型设计计算
一. 列管式换热器设计过程中的常见问题
换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修
清洗方便等为考察原则。当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。
1. 流体流动空间的选择原则 (1) 不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。 (4) 饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。 (5) 有毒流体宜走管内,使泄漏机会较少。 (6) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由 于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。 (8) 对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。
在选择流体流径时,上述各点常不能同时兼顾,应视
换热器设计
毕业设计(论文)
题目: 基于SW6软件的固定管板式换热器设计
学 院: 继续教育学院 助学单位: 辽宁石油化工大学自考中心 专 业: 过程装备与控制工程 办学形式: 自学考试 姓 名: 指导教师: 郝娇
2011年03月
辽宁石油化工大学继续教育学院论文
基于SW6软件的固定管板式换热器设计
摘 要
在科技日新月异的今天,石化工业也在不断地创新,换热器在其中起到的作用也越来越显著。而本次设计中的固定管板式换热器就属于换热器中较为常见的一种。它是利用间壁式换热达到冷流体与热流体的热量转换从而实现物料间的热量传递。
本次设计:说明部分,计算部分,绘图部分。说明部分简述了固定管板式换热器在生产过程中的工艺流程及在石化工业中起到的重要作用,换热器在国内外的现状和未来的发展前景,同时介绍了换热器的结构设计和主要零部件结构的设计及其容器常用材料等。也介绍了各个部件之间的链接如法兰连接。最后则介绍了换热器主要零件压力容器的检验和验收。计算部分
换热器设计总结
1
主要符号表--传热过程计算与换热器
符号 A b cp d do H K l m NTU Q q R r r T t a Dt e j l t 下标 传热面积 厚度 定压比热 直径 管外径 焓 传热系数 长度 质量流率 传热单元数 传热速率 热通量或热流密度 热阻 半径 汽化潜热 温度 温度 对流传热系数 传热温差 传热效率 温差修正系数 导热系数 时间 意义 m m 2单位 J/(kg·K) m m kJ/kg W/(m·K) m kg/s — W W/m (m·K)/W m kJ/kg K ℃ W/(m·℃) ℃或K — — W/(m·K) s 2222c 冷流体;h 热流体;1 进口;2 出口
2
化工生产中大多数情况不允许冷、热两种流体在换热过程中混合,所以要通过间壁式传热来进行热量交换。间壁式传热由固体内部的热传导及各种流体与固体表面间的对流传热组合而成。对于热传导和各种情况下的对流传热所遵循的规律已在上一章进行了详细阐明,本章将在此基础上进一步讨论传热过程的计算问题,并介
换热器设计总结
1
主要符号表--传热过程计算与换热器
符号 A b cp d do H K l m NTU Q q R r r T t a Dt e j l t 下标 传热面积 厚度 定压比热 直径 管外径 焓 传热系数 长度 质量流率 传热单元数 传热速率 热通量或热流密度 热阻 半径 汽化潜热 温度 温度 对流传热系数 传热温差 传热效率 温差修正系数 导热系数 时间 意义 m m 2单位 J/(kg·K) m m kJ/kg W/(m·K) m kg/s — W W/m (m·K)/W m kJ/kg K ℃ W/(m·℃) ℃或K — — W/(m·K) s 2222c 冷流体;h 热流体;1 进口;2 出口
2
化工生产中大多数情况不允许冷、热两种流体在换热过程中混合,所以要通过间壁式传热来进行热量交换。间壁式传热由固体内部的热传导及各种流体与固体表面间的对流传热组合而成。对于热传导和各种情况下的对流传热所遵循的规律已在上一章进行了详细阐明,本章将在此基础上进一步讨论传热过程的计算问题,并介