圆锥曲线最值问题
“圆锥曲线最值问题”相关的资料有哪些?“圆锥曲线最值问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线最值问题”相关范文大全或资料大全,欢迎大家分享。
圆锥曲线中的最值和范围问题
圆锥曲线专题:圆锥曲线中的最值和范围问题
热点透析
与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:
(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>
(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;
(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;
(6)构造一个二次方程,利用判别式??0。 突破重难点
x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92
2
解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|
222
的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①
22
因Q在椭圆上,则x=9(1-y) ②
1??将②代入①得|O1Q|= 9
圆锥曲线中的最值和范围问题
圆锥曲线专题:圆锥曲线中的最值和范围问题
热点透析
与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:
(1)结合定义利用图形中几何量之间的大小关系;典型例题:<<考一本>>
(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;
(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;
(6)构造一个二次方程,利用判别式??0。 突破重难点
x2?y2?1上移动,试求|PQ|的最大值。 【例1】已知P点在圆x+(y-4)=1上移动,Q点在椭圆92
2
解:先让Q点在椭圆上固定,显然当PQ通过圆心O1时|PQ|最大,因此要求|PQ|的最大值,只要求|O1Q|
222
的最大值.设Q(x,y),则|O1Q|= x+(y-4) ①
22
因Q在椭圆上,则x=9(1-y) ②
1??将②代入①得|O1Q|= 9
圆锥曲线最值问题求解的六种策略
圆锥曲线最值问题求解的六种策略
上海中学数学?2011年第5期35 圆锥曲线最值问题求解的六种策略 317523浙江省温岭市泽国中学王强 圆锥曲线中最值问题是高中数学的重点 内容,是高考中的一类常见问题,由于它能很 好地考查学生的逻辑思维能力,体现了圆锥 曲线与三角,函数,不等式,方程,平面向量等 代数知识之间的横向联系,使问题具有高度 的综合性和灵活性.圆锥曲线中的最值问题, 通常有两类:一类是有关长度,面积,角度等 的最值问题;另一类是圆锥曲线中有关几何 元素的最值问题.这些问题往往通过回归定 义,结合几何知识,建立目标函数,利用函数 的性质或不等式等知识以及观图,设参,转 化,替换等途径来解决. 一
,利用圆锥曲线定义
圆锥曲线的定义统一刻画了动点与两定点 距离和或差的不变性,或者动点到定点,定直线
距离比的不变性.利用这种不变关系将动态与 静态结合,解题策略是转化思想,通过”化曲为 AF=,又AG=,易得EC=4,FG=, 046√6 1
由余弦定理可得cos//AFG一一÷,故二面角’ A—DE~C的大小为120..
点评:思路3抓住DE_l-面BCE这一有利 条件,依据”一条直线垂直于两个平行平面中的 一
个平面,那么它也垂直于另
圆锥曲线范围最值与图形存在
圆锥曲线的范围问题
x221.设P是椭圆2?y?1(a?1)短轴的一个端点,Q为椭圆上的动点,求|PQ|的最大值.
a
2.设F1,F2分别是椭圆的左右焦点,若是P椭圆上的一个动点,求|PF1||PF2|的最大值和最小值.
3.在平面直角坐标系中,已知点F(2,2)及直线l:x?y?2?0,曲线C1是满足下列两个条件的动点P(x,y)的轨迹:①PF?2d,其中d是P到直线l的距离;
?x?0?.②?y?0?2x?2y?5?
(1) 求曲线C1的方程;
x2y2(2) 若存在直线m与曲线C1、椭圆C2:2?2?1(a?b?0)均相切于同一点,求椭圆C2ab离心率e的取值范围.
一、利用题设中已有的不等关系建立不等式
2.过点B(0,1)的直线l1交直线x?2于P(2,y0),过点B?(0,?1)的直线l2交
x0?y0?1,l1?l2?M. 2(1)求动点M的轨迹C的方程;
(2)设直线l与C相交于不同的两点S、T,已知点S的坐标为(-2,0),
x轴于P?(x0,0)点,
点Q(0,m)在线段ST的垂直平分线上,且QS?QT≤4,求实数m的取值范围.
1
解 (1)由题意,直线l1的方程是y??1?y0xx?1,∵
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点
圆锥曲线热点问题
专题限时集训(十七)A
[第17讲 圆锥曲线热点问题]
(时间:10分钟+35分钟)
1.抛物线y=4x上一点到直线y=4x-5的距离最短,则该点的坐标是( )[来源:学科网ZXXK]
A.(1,2) B.(0,0) 1?C.??2,1? D.(1,4)
2.设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A,B两点,点Q与
→→→→
点P关于y轴对称,O为坐标原点,若BP=2PA,且OQ·AB=1,则点P的轨迹方程是( )
3
A.x2+3y2=1(x>0,y>0) 23
B.x2-3y2=1(x>0,y>0) 2
3
C.3x2-y2=1(x>0,y>0)
23
D.3x2+y2=1(x>0,y>0)
2
1x2y2
3.已知直线y=x与双曲线-=1交于A、B两点,P为双曲线上不同于A、B的点,
294
当直线PA,PB的斜率kPA,kPB存在时,kPA·kPB=( )
4A. 91B. 22C. 3
D.与P点位置有关
x2y2
4.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为
2516
(6,4),则|PM|+|PF1|的最大值为________.
2222
1.与两圆x+y=1及x+y-8x+12=0都
圆锥曲线问题总结答案
圆锥曲线问题总结答案
一、 圆锥曲线的定义及应用
例1:分析⑴可利用椭圆定义、三角形的三边间关系及不等式性质求最值;题⑵是圆锥曲线与数列性质的综合题,可根据条件先求出双曲线的半实轴长a的值,再应用双曲线的定义与等差中项的知识求|AB|的值.
解:⑴设椭圆右焦点为F1,则|MF|?|MF1|?6,∴|MA|?|MF|?|MA|?|MF1|?6.又 ?|AF1|?|MA|?|MF1|?|AF1|(当M、A、F1共线时等号成立).又
|AF1|?2,∴|MA|?|MF|?6?2, |MA|?|MF|?6?2.故|MA|?|MF|的最大值为6?2,最小值为6?2.
?2b?6?7?c ⑵依题意有??,解得a?23.∵A、B在双曲线的左支上,∴|AF2|?|AF1|?2a,
a2?222?c?a?b?|BF2|?|BF1|?2a,∴
|AF2|?|BF2|?(|AF1|?|BF1|)?4a.又
|AF2|?|BF2|?2|AB|,|AF1|?|BF1|?|AB|.
∴2|AB|?|AB|?4a,即|AB|?4a.∴|AB|?4?23?83.
小结:在本例的两个小题中,⑴正确应用相应曲线的定义至关重要,否则求解思路受阻;⑵忽视双曲线定义中的两
第4讲圆锥曲线的定点与定值问题
第四讲 圆锥曲线中的定点与定值问题 1.如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的y交点为R. D(1)求动点R的轨迹E的方程; H(2)过曲线E的右焦点作直线l 交曲线E于M、N两点,交yC轴与点P,记PM??1MF,PN??2NF.求证:λ1+ λ2是定值. (设点法)
2. 已知A、B分别是直线y?P是AB的中点.
(1)求动点P的轨迹C的方程;
(2)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R.若
RAOBx33x和y?? x上的两个动点,线段AB的长为23,33RM??MQ,RN??NQ,证明:???为定值.(设直线方程法)
1
x2y2??1的左、右顶点为A、B,3. 在平面直角坐标系xoy中,如图,已知椭圆95右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1?0,y2?0.
(1)设动点P满足PF2?PB2?4,求点P的轨迹; (2)设x1?2,x2?13,求点T的坐标; (3)设t
圆锥曲线之轨迹问题(有答案)
圆 锥 曲 线 之 轨 迹 问 题
一、临阵磨枪
1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程。这种求轨迹的方法称之为直接法。
2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。 3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。
4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。
5.