勾股定理题型归纳含答案
“勾股定理题型归纳含答案”相关的资料有哪些?“勾股定理题型归纳含答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“勾股定理题型归纳含答案”相关范文大全或资料大全,欢迎大家分享。
勾股定理题型归纳
勾股定理复习小结
一、 知识结构 理 勾 股 定
直角三角形的性质:勾股定理 定理:a?b?c 应用:主要用于计算 222直角三角形的判别方法::若三角形的三边满足a它是一个直角三角形. 2?b2?c2 则二. 知识点回顾 1、 勾股定理的应用
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边
(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形
(1) 先确定最大边(如c)
(2) 验证c与a?b是否具有相等关系
(3) 若c=a?b,则△ABC是以∠C为直角的直角三角形;若c≠a?b 则△ABC不是直角三角形。 3、 勾股数
满足a?b=c的三个正整数,称为勾股数
如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17
(5)7,24,25 (6)9, 40, 41
222222222222勾股定理培优经典题型归纳
题型一:利用勾股定理解决实际问题
训练1、
勾股定理题型归纳
勾股定理复习小结
一、 知识结构 理 勾 股 定
直角三角形的性质:勾股定理 定理:a?b?c 应用:主要用于计算 222直角三角形的判别方法::若三角形的三边满足a它是一个直角三角形. 2?b2?c2 则二. 知识点回顾 1、 勾股定理的应用
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边
(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形
(1) 先确定最大边(如c)
(2) 验证c与a?b是否具有相等关系
(3) 若c=a?b,则△ABC是以∠C为直角的直角三角形;若c≠a?b 则△ABC不是直角三角形。 3、 勾股数
满足a?b=c的三个正整数,称为勾股数
如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17
(5)7,24,25 (6)9, 40, 41
222222222222勾股定理培优经典题型归纳
题型一:利用勾股定理解决实际问题
训练1、
勾股定理测试题(含答案)
18.2 勾股定理的逆定理 达标训练
一、基础·巩固
1.满足下列条件的三角形中,不是直角三角形的是( )
A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5
2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值).
图18-2-4 图18-2-5 图18-2-6
3.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.
4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=
5.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?
1AD,试判断△EFC的形状. 4
勾股定理练习题含答案
勾股定理练习题含答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]
勾股定理练习题
一、基础达标:
1. 下列说法正确的是( )
A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;
B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;
C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;
D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.
2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )
A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+
3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )
A 、2k
B 、k+1
C 、k 2-1
D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( ) A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角
勾股定理与折叠问题(经典题型)
与直角有关的折叠问题(一)
1.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH, 若EH=9厘米,EF=12厘米,则边AD的长是( ) A. 12厘米B. 15厘米C. 20厘米D. 21厘米
2. 如图,在矩
形ABCD中,AB=4,BC=8,将矩形ABCD沿EF
折叠,使点C与点A重合,则折痕EF的长为( ) 5C.
D.
A. 6B.
3.如图1,四边形ABCD是一矩形纸片,AB=8cm,AD=10cm,E是AD上一点,且AE=8cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图2;(2)将△AFB以BF为折痕向右折过去,得图3.则△GFC的面积是( ) A.
B.
C.
D.
4. 如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是( )A. D.
B.
C.
5.如图,在矩形纸片ABCD中,AD=6cm,点E在BC上,将纸片
沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF,则AB的长是( ) A. 2cmB.
6. 如图,CD
勾股定理知识点与常见题型总结
《勾股定理分类练习》
题型一:直接考查勾股定理:直角三角形中,若a, b分别为直角边,c为斜边,那么直角三角形三边的关系为 a2 +b2 =c2
变形公式:
1、如图1中,64、400分别为所在正方形的面积,则图中A 字母所代表的正方形面积是
C D B A 7cm
2、 如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,
则正方形A,B,C,D的面积之和为___________cm2。 3、在Rt△ABC中,斜边AB2 =3,则AB2+BC2+AC2的值是______ “知二求一”的题,可以直接利用勾股定理变形公式!
4、在?ABC中,?C?90?.
⑴已知AC?6,BC?8.求AB的长 ⑵已知AB?17,AC?15,求BC的长
5、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A.25
B.14
C.7
D.7或25
题型二:应用勾股定理建立方程(“知一求二”的题,应设未知数) 1、已知直角三角
勾股定理
北师大版八年级上册数学 第一章 探究勾股定理专项练习
探索勾股定理(01) 1.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE
⊥BC
垂足分
别是D
、E.则图中全等的三角形共有( )
2.如图,在边长为4的等边三角形ABC中,AD是BC
边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )
4.如图,点A是5×5网格图形中的一个格点(小正方形的顶点),图中每个小
正方形的边长为1,以A为其中的一个顶点,面积等于5/2的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )
5.如图,在把易拉罐中
的水
倒入
一
个圆
水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )
6.如图,将圆桶中的水倒入一个直径为40cm
,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45度.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为
( )
7.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )
8
.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则
AC
勾股定理习题(附答案)
勾股定理评估试卷(1)
一、选择题(每小题3分,共30分)
1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A)30 (B)28 (C)56 (D)不能确定 2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长
(A)4 cm (B)8 cm
(C)10 cm
(D)12 cm
3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( (A)25
(B)14
(C)7
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为(A)13 (B)8 (C)25 5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
720252024252424252071571515(A)(B)(C)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形三角形.
7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是(A) 25
最新勾股定理知识点与常见题型总结
勾股定理
一.知识归纳 1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2 b2 c2
勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:
1
方法一:4S S正方形EFGH S正方形ABCD,4 ab (b a)2 c2,化简可证.
2
D
E
b
A
c
BC
方法二:
ba
c
a
b
b
c
cb
a
a
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
1
四个直角三角形的面积与小正方形面积的和为S 4 ab c2 2ab c2
2大正方形面积为S (a b)2 a2 2ab b2 所以a2 b2 c2
111
方法三:S梯形
第一章《勾股定理》专题复习(含答案)
第一章《勾股定理》专项练习
专题一:勾股定理
考点分析:
勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题
典例剖析
例1.(1)如图1是一个外轮廓为矩形的机器
零件平面示意图,根据图中的尺寸(单位:mm),计算两圆 孔中心A和B的距离为______mm.
(2)如图2,直线l上有三个正方形a,b,c, 若a,c的面积分别为5和11,则b的面积为( )
A.4
B.6 D.55
图2
图
1 C.16
分析:本题结合图中的尺寸直接运用勾股定理计算即可.
解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得: AB2=902+1202=22500,所以AB=150(mm)
(2)由勾股定理得:b=a+c=5+11=16,故选C.
点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.
例2.如图3,正方形网格的每一个小正方形的边长都是1,试求
∠A1E2A2 ∠A4E2C4 ∠A4E5C4的度数.
A5A4
E5A 54A4
E5
4
A3A2
A1AB11D1E1 1
2
EA2
A3E2
B11D1E1
解:连结
图3
A3E2. A3A2