cnn卷积神经网络原理
“cnn卷积神经网络原理”相关的资料有哪些?“cnn卷积神经网络原理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“cnn卷积神经网络原理”相关范文大全或资料大全,欢迎大家分享。
卷积神经网络CNN代码解析
卷积神经网络CNN代码解析
deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 Rasmus Berg Palm
代码下载:https://http://www.77cn.com.cn/rasmusbergpalm/DeepLearnToolbox
这里我们介绍deepLearnToolbox-master中的CNN部分。
DeepLearnToolbox-master中CNN内的 函数:
调用关系为:
该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。
网络结构为:
让我们来看看各个函数:
一、Test_example_CNN: .................................................................................................................................................
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
基于卷积神经网络的正则化方法
计算机研究与发展DOI:10.7544/issnl000
JournalofComputerResearchandDevelopment
1239.2014.20140266
1900,2014
51(9):1891
基于卷积神经网络的正则化方法
吕国豪
罗四维
黄雅平蒋欣兰
北京
100044)
(北京交通大学交通数据分析与挖掘北京市重点实验室(1vguohao@bjtu.edu.cn)
ANovelRegularization
Method
a
a
Based
on
ConvolutionNeuralNetwork
LnGuohao,LuoSiwei。HuangY耐
X.¨dam
诧g
,
(BeijingKey
Laboratory
ofTraffic
D以
嗜m,以≯|Ⅲn㈨盯d曙M
is
●Be
g
∞_宝
g
University,Beijing100044)
inverse
Abstract
Regularization
method
widely
usedin
solving
the
problem.An
accurate
regularizationmodel
playsthemost
importantpartinsolvingtheinverse
problem.Theenergy
constraints
BP神经网络原理
BP神经网络原理
BP网络模型处理信息的基本原理是:输入信 号Xi通过中间节点(隐层点)作用于输出节 点,经过非线形变换,产生输出信号Yk,网 络训练的每个样本包括输入向量X和期望输出 量t,网络输出值Y与期望输出值t之间的偏差, 通过调整输入节点与隐层节点的联接强度取 值和隐层节点与输出节点之间的联接强度Tjk 以及阈值,使误差沿梯度方向下降,经过反 复学习训练,确定与最小误差相对应的网络 参数(权值和阈值),训练即告停止。此时 经过训练的神经网络即能对类似样本的输入 信息,自行处理输出误差最小的经过非线形 转换的信息。
BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、 误差计算模型和自学习模型。 (1)节点输出模型 隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1) 输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2) f-非线形作用函数;q -神经单元阈值。
2作用函数模型 作用函数是反映下层输入对上层节点刺激脉冲 强度的函数又称刺激函数,一般取为(0,1)内连续 取值Sigmoid函数: f(x)=1/(1+e-x)
( 3)误差计算模型 误差计算模型是反映神经网络期望输出与计算输出 之间误差大小
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
BP神经网络原理及应用
BP神经网络原理及应用
1 人工神经网络简介
1.1生物神经元模型
神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相 互信息传递的基本单元。据神经生物学家研究的结果表明,人的大脑一般有1010 1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
1.2人工神经元模型
神经网络是由许多相互连接的处理单元组成。这些处理单元通常线性排列成 组,称为层。每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P模型,它是大多数神经网络模型的基础。
Yj(t) f( wjixi
基于卷积神经网络的深度学习算法与应用研究
1对深度学习的国内外研究现状值得一看;2讲了神经网络和卷积神经网络的基础知识;3深度学习在车标上的应用基于卷积神经网络的深度学习算法与应用研究摘要深度学习(DL,DeepLearning)是计算机科学机器学习(ML,MachineLearning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标一人工智能(AI,ArtificialIntelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。将深度学习与各种实际应用研究相结合也是一项很重要的工作。本文整理和总结了国内外关于深度学习的发展历程和最新的研究成果,对人工神经网络及经典的卷积神经网络所涉及到
基于卷积神经网络的人脸识别系统设计与实现
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。与传统的人脸识别的方法相比深度
万方数据
随着社会的不断发展,人们的身份信息在生产生活中显得越来越重要。人脸识别技术不仅是计算机视觉研究的热点,而且在安保、金融、电子政务等多个领域得到了广泛应用。本文中主要是研究了深度学习方法中卷积神经网络的模型在自然场景下人脸识别的相关应用。