高中三角函数教学反思
“高中三角函数教学反思”相关的资料有哪些?“高中三角函数教学反思”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中三角函数教学反思”相关范文大全或资料大全,欢迎大家分享。
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπRn R2112
⒈L弧长=R=180 S扇=LR=R =
36022
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2
-2abcosC cosA
2bc
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
2
4R
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
r1x
ctg sec sin ctg ⑥csc
ysin r
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:si
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =
tanA?tanB1-tanAtanBtanA?tanB1?tanAtanBcotAcotB-1cotB?cotAcotAcotB?1cotB?cotA
cot(A+B) =cot(A-B) =倍角公式 tan2A =
2tanA1?tanA2
Sin2A=2SinA?CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(半角公式 sin(
A2A2A2A2A2?3+a)·tan(
?3-a)
)=
1?cosA21?cosA21?cosA1?cosA1?cosA1?cosA1?cosAsinA
cos()=
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπR112n R2
⒈L弧长=R=180 S扇=LR=R=
22360
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2-2abcosC cosA
2bc
2
4R
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
xr1
sin ctg ⑥csc ctg sec rysin
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:sin
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
高中三角函数公式大全
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB tan(A+B) =
tan(A-B) =tanA tanB1-tanAtanBtanA tanB
1 tanAtanB
cotAcotB-1
cotB cotA
cotAcotB 1
cotB cotA cot(A+B) =cot(A-B) =
倍角公式 tan2A =2tanA
1 tanA2
Sin2A=2SinA CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA
tan3a = tana·tan(
半角公式 sin(A2
A2
A2
A2
A2 3+a)·tan( 3-a) )=1 cosA21 cosA21 cosA1 cosA1 cosA1 cosA1 cosAsinA cos(
高中三角函数习题(含答案)
三角函数
1.将-300o化为弧度为( ) A.-
5?7?7?4? B.-; C.-; D.-; ;36432.如果点P(sin?cos?,2cos?)位于第三象限,那么角?所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.下列选项中叙述正确的是 ( ) A.三角形的内角是第一象限角或第二象限角 B.锐角是第一象限的角
C.第二象限的角比第一象限的角大 D.终边不同的角同一三角函数值不相等 4.下列函数中为偶函数的是( )
A.y?sin|x| B.y?sin2x C.y??sinx D.y?sinx?1
?(x???)B5已知函数y?Asin的一部分图象如右图所示,如果
A?0,??0,|?|??2,则( )
A.A?4 C.??B.??1 D.B?4
?6
?6.函数y?3sin(2x?)的单调递减区间( )
6A??k????12,k??5??(k?Z) B.?k??5?,k??11??(k?Z) ??12?1212???6???63???
高中三角函数公式大全(免费)
高中三角函数公式大全
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB tanA tanBtan(A+B) = 1-tanAtanB
tanA tanBtan(A-B) = 1 tanAtanB
cotAcotB-1cot(A+B) = cotB cotA
cotAcotB 1cot(A-B) = cotB cotA
倍角公式 2tanAtan2A = 21 tanA
Sin2A=2SinA CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式 sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 33
半角公式 sin(A cosA)= 22
A cosA)= 22cos(
tan(A cosA)= 21 cosAA cosA)= 21 cosAcot(
tan(A1 cosAsinA)== 21 cos
高中三角函数习题解析精选
看看有帮助的
三角函数解析
1.(2003上海春,15)把曲线ycosx+2y-1=0先沿x轴向右平移下平移1个单位,得到的曲线方程是( )
A.(1-y)sinx+2y-3=0 B.(y-1)sinx+2y-3=0 C.(y+1)sinx+2y+1=0 D.-(y+1)sinx+2y+1=0 1.答案:C
解析:将原方程整理为:y=
12 cosx
2
个单位,再沿y轴向
,因为要将原曲线向右、向下分别移动
2
个单位
和1个单位,因此可得y=
1
2 cos(x
2
-1为所求方程.整理得(y+1)sinx+2y+1=0.
)
评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解,可直接化为:(y+1)cos(x-
2
)+2(y+1)-1=0,即得C选项.
2.(2002春北京、安徽,5)若角α满足条件sin2α<0,cosα-sinα<0,则α在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.答案:B
解析:sin2α=2sinαcosα<0 ∴sinαcosα<0 即sinα与cosα异号,∴α在二、四象限, 又cosα-sinα<0 ∴cosα<sinα
由图4—5,
高中三角函数和指数函数教学的案例分析
天 津 师 范 大 学 津 沽 学 院
题目:
本科毕业论文
高中三角函数和指数函数教学的案例分析
系 别:理学系 学生姓名:李莹 学 号:12583143 专 业:数学与应用数学 年 级:2012级
完成日期:2016年4月14日 指导老师:刘明 苏帆
高中三角函数和指数函数教学的案例分析
摘要:数学被许多高中生认为是一门特别难的学科,学起来难度较大,最富有挑战的
内容当属函数了,其中所涉及的内容非常广泛,方程的计算、公式的数量、图像的分析都对学生来说是一种挑战。本文就三角函数和指数函数的教学案例来进行详细的分析,结合教学实践,从三角函数和指数函数的案例出发进行分析,可以提高学生对于函数的理解和运用。指数函数和对数函数作为两个基本初等函数是高中数学中最重要的,是高考数学试卷中考查函数单调性、奇偶性、定义域、值域等的重要载体;它也一直是高考的热点问题之一。所以对于教师来说,优化课程内容,培养学生学习兴趣,让学生充分理解函数之间的关系,并正确绘制相关函数的图像,通过把数据和图像联系到一起解决问题的能力,也是很艰巨的教学任务。
关键词:案例分析, 三角函数,指数函数
I
Trigonometric and Exponent