分式方程的应用课件
“分式方程的应用课件”相关的资料有哪些?“分式方程的应用课件”相关的范文有哪些?怎么写?下面是小编为您精心整理的“分式方程的应用课件”相关范文大全或资料大全,欢迎大家分享。
分式方程的实际应用
分式方程的实际应用
分式方程的应用与一元一次方程的应用以及二元一次方程组的应用在列式没有区别,只是在解完方程后除检验是否符合实际问题后,还要检验求出的根是否使原方程式的根为0,最后才答。
一.行程问题
例1 A、B两地相距80Km,甲骑车从A地出发,1h后乙也从A地出发,其速度是甲的1.5倍,
当追到B地时甲比乙先到20分钟,求甲、乙的速度
例2 一列火车从车站开出,预计行程600Km,当它开出3h后,因出现特殊情况,休整耽误了
30min,后来把速度提高到原来的1.2倍,结果准时到达目的地,求这列火车原来的速度。
巩固练习:
1. 从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公
路。某客车在高速公路上行驶的平均速度比在普通公路上每小时快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2. A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽
车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。
3. 我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必
需是原计划的
如何理解分式方程和分式方程的根
如何理解分式方程和分式方程的根
学习分式方程和求解分式方程的根时,容易产生一些模糊的认识,要真正弄懂学好,应注意以下几点:
1. 分式方程是分母含未知数的有理方程。这告诉我们:
x2?1与x?1是不同的两个方程,①分式方程是形式上的定义。如方程前者x为分式方程,后者为整式方程。
②分式方程强调分母是含未知数而不是含有字母,这与分式定义中分母规定不一定。如关于x的方程
1x?m?2?,它不是分式方程,而是整式方程。 m2③分式方程是有理方程。如方程
x?1不是分式方程。 x2. 解分式方程时,去分母的方法不一定要乘最简公分母,但乘以最简公分母意义在于它不仅能使去分母具有可行性,同时演算简洁,有时还可减少增根个数。
如:解方程
x2?2?1,若方程两边乘以(x?1)(x2?2x?1),解得x?1x?2x?1x??1,而x??1为增根;若方程两边乘以x2?2x?1,解得x?1为原方程的根。
3. 分式方程与它变形之后的整式方程的关系表现在:
一方面,分式方程的根是从整式方程中求出来的,它一定是整式方程的根。但整式方程的根不一定是分式方程的根,若是它的根的条件是要使分母不为零。
另一方面,分式方程的要求解要依靠整式方程,只不过其中排除分母不为零这一因素。如
分式方程应用行程问题
行程问题课件
分式方程应用(行程问题)
你,我,他——人人都有 创造力. 相信自己是最棒的.
行程问题课件
随时小结
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系.
2.设:选择恰当的未知数,注意单位和语言完整.
3.列:根据数量和相等关系,正确列出代数式和方程. 4.解:认真仔细. 5.验:有两次检验.
两次检验是:
(1)是否是所列方程的解;
(2)是否满足实际意义.
6.答:注意单位和语言完整.且答案要生活化.
行程问题课件
1、在行程问题中,三个基本量是:路程、速度、时间。 它们的关系是: 路程 路程 路程= 速度×时间 ;速度= 时间 ;时间= 速度 .
基础练习: 1 x (1)小汽车的速度为x千米/时,则15分钟能行驶________千米 4
(2)甲乙两地相距300千米,客车的速度为x千米/时,
300 则乘坐该客车从甲地到乙地需_________小时. x
(3)客车从甲地开往乙地需x小时,已知甲乙两地相距450千米,
450 则该客车的速度是__________千米/时. x
在水流行程中:已知船在静水中的速度和水流速度,那么 顺水速度= 静水中的速度 + 水流速度 ;
逆水速度= 静水中的速度 - 水流速度 .
行程问题课件
例题1:某列车
分式方程应用行程问题
行程问题课件
分式方程应用(行程问题)
你,我,他——人人都有 创造力. 相信自己是最棒的.
行程问题课件
随时小结
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系.
2.设:选择恰当的未知数,注意单位和语言完整.
3.列:根据数量和相等关系,正确列出代数式和方程. 4.解:认真仔细. 5.验:有两次检验.
两次检验是:
(1)是否是所列方程的解;
(2)是否满足实际意义.
6.答:注意单位和语言完整.且答案要生活化.
行程问题课件
1、在行程问题中,三个基本量是:路程、速度、时间。 它们的关系是: 路程 路程 路程= 速度×时间 ;速度= 时间 ;时间= 速度 .
基础练习: 1 x (1)小汽车的速度为x千米/时,则15分钟能行驶________千米 4
(2)甲乙两地相距300千米,客车的速度为x千米/时,
300 则乘坐该客车从甲地到乙地需_________小时. x
(3)客车从甲地开往乙地需x小时,已知甲乙两地相距450千米,
450 则该客车的速度是__________千米/时. x
在水流行程中:已知船在静水中的速度和水流速度,那么 顺水速度= 静水中的速度 + 水流速度 ;
逆水速度= 静水中的速度 - 水流速度 .
行程问题课件
例题1:某列车
专题7:分式方程及其应用
总复习
考点 分式 方程 的概 念
课标要求 1.知道分式方程的概念,会识别分式 方程; 2.理解分式方程中产生增根(无解) 的情况.
难度
较难
1.知道解分式方程的一般步骤; 2.掌握应用“去分母”和“换元”将分式 分式 方程转化为整式方程,领会解分式方 方程 程“整式化”的化归思想; 的解 3.掌握分式方程的验根方法,注意解 法 分式方程时可能会出现增根,解方程 后一定要验根.
中等
考点 分式 方程 的应 用
课标要求 1.分式方程来解决简单的实际问题. 2.在列分式方程应用题求解检验时, 不仅要考虑是否产生了增根,还要考 虑是否符合题意(实际情况).
难度
中等
题型预测 分式方程考查内容相对比较集中,如分式方 程的增根或无解问题、解分式方程问题和分式方 程的应用问题,除了应用问题常出现在解答题中 外,其余基本以填空、选择的形式出现,其中与 增根有关的问题难度较大.
1._____ 分母 里含有未知数的方程叫做分式方程. 2.分式方程的增根必须满足两个条件 某一个分母 (1)使原分式方程的______________ 为零; (2)是原分式方程去分母后所得的整式方程的根 ___________.
3 .解分式方程的基本思路:将分式方程化 整式 为______
专题7:分式方程及其应用
数学电子教案
考点
课标要求
难度
分式 1.知道分式方程的概念,会识别分式方程; 方程 2.理解分式方程中产生增根(无解)的情 的概 况. 念
较难
1.知道解分式方程的一般步骤; 2.掌握应用“去分母”和“换元”将分式方程转 分式 化为整式方程,领会解分式方程“整式化”的 方程 化归思想; 的解 3.掌握分式方程的验根方法,注意解分式 法 方程时可能会出现增根,解方程后一定要验 根.
中等
考点
课标要求
难度
分式 1.分式方程来解决简单的实际问题; 方程 2.在列分式方程应用题求解检验时,不仅 的应 要考虑是否产生了增根,还要考虑是否符合 中等
用
题意(实际情况).
题型预测分式方程考查内容相对比较集中,如分式方程的增 根或无解问题、解分式方程问题和分式方程的应用问题, 除了应用问题常出现在解答题中外,其余基本以填空、选 择的形式出现,其中与增根有关的问题难度较大.
1._____ 分母 里含有未知数的方程叫做分式方程. 2.分式方程的增根必须满足两个条件:某一个分母 (1)使原分式方程的______________ 为零;
整式方程的根 . (2)是原分式方程去分母后所得的___________
3 .解分式方程的基本思路:将分式方程化 整式 为_________
专题7:分式方程及其应用
数学电子教案
考点
课标要求
难度
分式 1.知道分式方程的概念,会识别分式方程; 方程 2.理解分式方程中产生增根(无解)的情 的概 况. 念
较难
1.知道解分式方程的一般步骤; 2.掌握应用“去分母”和“换元”将分式方程转 分式 化为整式方程,领会解分式方程“整式化”的 方程 化归思想; 的解 3.掌握分式方程的验根方法,注意解分式 法 方程时可能会出现增根,解方程后一定要验 根.
中等
考点
课标要求
难度
分式 1.分式方程来解决简单的实际问题; 方程 2.在列分式方程应用题求解检验时,不仅 的应 要考虑是否产生了增根,还要考虑是否符合 中等
用
题意(实际情况).
题型预测分式方程考查内容相对比较集中,如分式方程的增 根或无解问题、解分式方程问题和分式方程的应用问题, 除了应用问题常出现在解答题中外,其余基本以填空、选 择的形式出现,其中与增根有关的问题难度较大.
1._____ 分母 里含有未知数的方程叫做分式方程. 2.分式方程的增根必须满足两个条件:某一个分母 (1)使原分式方程的______________ 为零;
整式方程的根 . (2)是原分式方程去分母后所得的___________
3 .解分式方程的基本思路:将分式方程化 整式 为_________
分式方程应用题专题1
分式应用题
分式方程应用题专题
一、工程问题
1、某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产25%,可提前10天完成任务,问原计划日产多少台?
2、现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。求原来每天装配的机器数.
3、某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的21倍,所以加工完比2
原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?
4、打字员甲的工作效率比乙高25%,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?
5、甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.
6、某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?
7、某校招生时, 2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学
分式方程应用题分类解析
分式方程应用题
教学目标:会列分式方程的应用题,培养应用意识,提高分析问题解决问题的能力。 教学重难点:找等量关系。 教学过程: 复习回顾
1、分式方程的定义 2、分式方程的解法 3、分式方程的曾根 练习1、分式方程
x29??出现增根,那么增根一定是( ) x?3xx?x?3?A.0 B.3 C.0或3 D.1
x?7m??7有增根,则增根为 ,m的值为 。 2、如果关于x的方程
x?66?x3、解方程
74611?2?2?2(1) 2 (2) 2
x?5x?6x?x?6x?xx?xx?1
列分式方程解应用题的一般步骤:(1)审题,分清已知量和未知量。(2)设未知数,必须写单位名称。(3)找等量关系,列方程,注意单位要统一。(4)解方程(5)检验,看方程的解是否满足方程和符合题意(6)写出答案。 类型一、轮船顺逆水应用问题
1、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
2、轮船顺流、逆流各
分式方程应用题及答案
学习必备欢迎下载
分式应用题
1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。问:乙单独整理需多少分钟完工?
2、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?
3、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴求这种纪念品4月份的销售价格。
⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?
学习必备欢迎下载
4、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案一:甲队单独完成这项工程刚好如期完成;
方案二:乙队单独完成这项工程要比规定日期多用5天;
方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
试问:在不耽