2022中考作文常考八大主题
“2022中考作文常考八大主题”相关的资料有哪些?“2022中考作文常考八大主题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2022中考作文常考八大主题”相关范文大全或资料大全,欢迎大家分享。
中考作文四大常考主题
中考 作文 主题 题型
中考作文四大常考主题
人生感悟类——自信、勤奋、乐观、信念等;
感恩感动类——父母、师友、祖国、社会;
审视探究类——思想认识、关注社会;
审美体验类——文化、自然、风俗。
一、人生感悟类
思路一:
总括心境——点出原因——受到鼓励——发生变化——点明中心。
例文:
自己造翅的鸟
当我踏进大门,我深呼吸了一口气。这是一个新的开始。
没人知道我以前是多么弱小。我以前骨瘦如柴,从不做有冒险性的事。即使家住在一个小街上。
我出生便没有翅膀。
坐在初中的教室里,看那些同龄人们都比我强,我也曾自卑过。直到有一天,父亲告诉我几句话,至今记忆犹新。
“你知道鸵鸟与蝙蝠吗?它们一个有翅膀,一个没有,可鸵鸟飞不起来,蝙蝠却生出了膜翼,在天上翱翔。”
父亲的话看似不经意,却点醒了我。没有翅膀的人,一样能飞!我铮铮七尺男儿,安与妇孺比较?我的血管里流淌着男儿的热血,我也应该搏击于天际!
于是,我满怀豪情地学习跆拳道。飘逸的道带、雪白的服装,一丝晃动,几分洒脱,旋转着将意念踢进靶中,在挥洒荷尔蒙的一瞬间,我看到了背后生出的左翼——力量。
我不是最强的,可我是最拼命的。
怀着执著,我拿起书籍。我原本不爱书,如今却渐渐视其为生命。于是,爱丽丝带我走入奇境,简·爱向我诉说她那
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(三)——方案设计问题
题型概述
方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。它包括测量方案设计、作图方案设计和经济类方案设计等。【出处:21教育名师】 题型例析
类型1:利用方程、不等式(组)进行方案设计
这类问题往往列方程组或不等式(组)解应用题,但是列方程的关键又是找出题目中存在的的等量关系或不等式关系;对于设计方案题一般要根据题意列出不等式或不等式组,求不等式组的整数解(或者符合要求的解)。
【例题】(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表: 甲店 乙店
A种水果/箱 11元 9元
B种水果/箱 17元 13元
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(七)——综合探究问题
题型概述
探索是一中重要的研究问题的方法,也是人们发现新知识的重要手段,非常有利于培养创新能力。探索型问题一般有从特殊到一般的探索和存在型探索型或者从实践中探索,复习时对这些呈现方式具有多样性、活泼性、猜想性、挑战性的探索性试题要多关注,多反思,多总结其解题经验,以增强自己的探究能力。 题型例析
类型1:实践性综合探索问题
这类问题是将某一问题的解决方法,运用到解决不同情景下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情景中对应知识来解决问题。
【例题】(2015岳阳第23题10分)
已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系: .
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(三)——方案设计问题
题型概述
方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。它包括测量方案设计、作图方案设计和经济类方案设计等。【出处:21教育名师】 题型例析
类型1:利用方程、不等式(组)进行方案设计
这类问题往往列方程组或不等式(组)解应用题,但是列方程的关键又是找出题目中存在的的等量关系或不等式关系;对于设计方案题一般要根据题意列出不等式或不等式组,求不等式组的整数解(或者符合要求的解)。
【例题】(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表: 甲店 乙店
A种水果/箱 11元 9元
B种水果/箱 17元 13元
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(六)——图形操作问题
题型概述
操作题是当今中考命题的热点,在今后仍是大趋势,是数形结合的拓展和深化,它有助于学生发展空间观念和创新能力的培养,对于这类问题的解答,首先要求大家积极的参与操作、实验、观察、猜想、探索、发现结论全过程,有效提高解答操作试题的能力。 题型例析
类型1:网格与画图
结合图形找准关键性格点,需要对网格有深刻理解,同时结合相关几何知识画出图形。 【例题】(2015?浙江丽水,第19题6分)如图,已知△ABC,∠C=Rt∠,AC (1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹); (2)连结AD,若∠B=37°,求∠CAD的度数. 【答案】解:(1)作图如下: (2)∵△ABC中,∠C=Rt∠,∠B=37°,∴∠BAC=53°. ∵AD=BD,∴,∠B=∠BAD=37° 全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | www.xsjjyw.com 最大最全最精的教育资源网 www.xsjjyw.com ∴∠CAD=∠BAC?∠B
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(一)数学思想方法问题
题型概述
数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。
初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。结合中考走向,我们重点就以下几种思想方法进行赏析强化。
【题型例析】 类型1:整体思想
整体思想就是考虑数学问题时,不是着眼与它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密的联系这的量作为整体来处理运用的思想方法。 【例题】.(1)(2015?湖南株洲,第13题3分)因式分解:x(x?2)?16(x?2)= 。 【解析】
本题考点为:分解因式,首先提取整体公因式(x?2),然后还要注意彻底分解, (x?16)仍可以利用平方差公式分解。 答案为:(x?2)(x?4)(x?4)
(2)(2015
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(七)——综合探究问题
题型概述
探索是一中重要的研究问题的方法,也是人们发现新知识的重要手段,非常有利于培养创新能力。探索型问题一般有从特殊到一般的探索和存在型探索型或者从实践中探索,复习时对这些呈现方式具有多样性、活泼性、猜想性、挑战性的探索性试题要多关注,多反思,多总结其解题经验,以增强自己的探究能力。 题型例析
类型1:实践性综合探索问题
这类问题是将某一问题的解决方法,运用到解决不同情景下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情景中对应知识来解决问题。
【例题】(2015岳阳第23题10分)
已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系: .
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(五)——阅读理解问题
题型概述
阅读理解型问题一般都是先提供一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容,思想方法,把握本质,解答试题中提出的问题,对于这类题求解步骤是“阅读—分析—理解—创新应用”,其关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材,因此这种试题是考查大家随机应变能力和知识的迁移能力。 题型例析
类型1:新定义运算型
对于这种新定义型问题解答需要深刻理解新定义运算法则和运算过程,将新定义运算转化为熟悉的加减乘除等运算。
【例题】.(2015·湖北省武汉市,第15题3分)定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=_________ 10
2
?a?2b?5?a?1??4a?b?6b?2,所以x※y=x2+2y,所以2※3=22+2×3=10.
【解析】由题意知,?,所以?新定义翻译:新定义的实质是解二元一次方程组,从而确定常数值,最后转化为求代数式的值.本题以新定义
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(一)数学思想方法问题
题型概述
数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。
初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。结合中考走向,我们重点就以下几种思想方法进行赏析强化。
【题型例析】 类型1:整体思想
整体思想就是考虑数学问题时,不是着眼与它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密的联系这的量作为整体来处理运用的思想方法。 【例题】.(1)(2015?湖南株洲,第13题3分)因式分解:x(x?2)?16(x?2)= 。 【解析】
本题考点为:分解因式,首先提取整体公因式(x?2),然后还要注意彻底分解, (x?16)仍可以利用平方差公式分解。 答案为:(x?2)(x?4)(x?4)
(2)(2015
初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型
最大最全最精的教育资源网 www.xsjjyw.com
专题复习(七)——综合探究问题
题型概述
探索是一中重要的研究问题的方法,也是人们发现新知识的重要手段,非常有利于培养创新能力。探索型问题一般有从特殊到一般的探索和存在型探索型或者从实践中探索,复习时对这些呈现方式具有多样性、活泼性、猜想性、挑战性的探索性试题要多关注,多反思,多总结其解题经验,以增强自己的探究能力。 题型例析
类型1:实践性综合探索问题
这类问题是将某一问题的解决方法,运用到解决不同情景下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情景中对应知识来解决问题。
【例题】(2015岳阳第23题10分)
已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系: .
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,