等腰三角形和等边三角形的性质教案
“等腰三角形和等边三角形的性质教案”相关的资料有哪些?“等腰三角形和等边三角形的性质教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“等腰三角形和等边三角形的性质教案”相关范文大全或资料大全,欢迎大家分享。
等腰三角形等边三角形复习课教案 吴瑱祯
课题:等腰三角形、等边三角形复习
学校:崇明县新海学校
吴 瑱 祯
一、教学目标
1.通过三个板块,每个板块的题组,复习等腰三角形、等边三角形相关的概念,性质。
2.根据具体几何综合问题,总结基本图形,归纳几何解题策略。 3.在练习中,体会数形结合、分类讨论的思想。 二、教学重点与难点
1.能够在解题中,对于知识点进行归纳总结,并且对每一组题目总结解题方法。
2.对于复杂的几何图形中,正确识别基本图形。
3.对于旋转类问题,能明确不变元素,在一题多变中抓住问题本质。 三、教学设计说明
本节课主要复习等腰三角形、等边三角形相关概念,性质,并注重解题方法的总结。整节课分为三大板块,每一板块都各具特点。第一版块以题组形式,在类比中发现等腰三角形相关知识及数学思想:分类讨论。第二版块展现初中几何重要的基本图形。第三版块,由一题旋转得到相关几题,体现一题多变。
四、教学过程 (一)第一版块
第一组:
1.等腰三角形一腰为3cm,底边为4cm,则它的周长______________
2.等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是______________ 3.等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是__________
第七讲 等腰三角形与等边三角形最短路径
寒假课程讲义
年级 授课时间 授课主题 初二 2014.1.7 科目 授课次数 等腰三角形、等边三角形 数学 第 7 次 1. 重难点突破 1、了解等腰三角形和等边三角形的概念,并能够判定三角形是等腰三角形或等边三角形 2、正确理解等腰三角形和等边三角形的性质,能运用其解决相关问题 3、含30?角的直角三角形的性质及其运用 4、最短路径问题 2. 达成目标 1、灵活应用性质解决相关题目。 2、能够判定三角形是等腰三角形或等边三角形。 3、正确理解含30?角的直角三角形的性质 4、能够运用知识解决实际问题的最短路径问题 知识点一 等腰三角形
概念 有两边相等的三角形是等腰三角形 注意:1、等腰三角形是轴对称图形
2、等腰三角形顶角可以是直角、锐角、钝角,而底角只能是锐角
3、对于等腰三角形问题,我们说角或是边时,一般都要指明是顶角还是底角,是底边还是腰,没有说明则都有可能,要分类讨论解决,这是解决等腰三角形最容易忽视和产生错误的地方。 知识点二 等腰三角形的性质
(1)等腰三角形的两个底角相等(简写成“等边对等角”)
注意:(1)这
等边三角形性质与判定
知识回顾名 称 等 腰 三 角 形 图 形A
性
质
判
定
两腰相等 等边对等角
两边相等 等角对等边 “三线合一” 的逆用
B
C
三线合一
轴对称图形
学习园地在等腰三角形中,有一种特殊的情况, 就是底边与腰相等,这时,三角形三边相 等。等边三角形: 三条边都相等的三角形. (正三角形) 等边三角形是特殊的等腰三角形.
探索星空:探究性质一1、等边三角形的内角都相等吗?为什么?由已知:AB=AC=BC, ∵AB=AC ∴∠B=∠C (为什么?) 同理 ∠A=∠C ∴∠A=∠B=∠C ∵ ∠A+∠B+∠C=180° ∴ ∠A= ∠B= ∠C=60 °
A
B
C
结论:等边三角形的内角都相等,且等于60 °.
探索星空:探究性质二2、等边三角形有“三线合一”的性质吗?为什 么? A
B
C
结论:等边三角形每条边上的中线,高和所对角 的平分线都三线合一。
探索星空:探究性质三3、等边三角形是轴对称图形吗?有几条对称轴?
A
B
C
结论:等边三角形是轴对称图形,有三条对称.
等边三角形的性质1 .三条边相等 2.等边三角形的内角都相等,且等于60 °3.等边三角形各边上中线,高和所对角的平
分线都三线合一.4.等边三角形是轴对称图形,有三条对称轴.
探索
等边三角形1 浙教版
等边三角形1 浙教版
昌化镇中
陈献中
等边三角形1 浙教版
名 称
图
形
概
念
性质与边角关系
判
定
等 腰 三 角 形B
1.两腰相等.A 有两边 相等的 三角形 是等腰 三角形。 C
1.两边相等。2.等角对等边,
2.等边对等角, 3. 三线合一。 4.是轴对称图形.
等边三角形1 浙教版
等边三角形在等腰三角形中,有一种特殊的情况, 就是底边与腰相等,这时,三角形三边相 等。
我们把三条边都相等的三角形 叫做等边三角形(正三角形)。
等边三角形1 浙教版
等边三角形性质探索: 1.等边三角形的内角都相等吗?为什么? A 由已知:AB=AC=BC, ∵AB=AC ∴∠B=∠C (为什么?) 同理 ∠A=∠C ∴∠A=∠B=∠C ∵ ∠A+∠B+∠C=180° ∴ ∠A= ∠B= ∠C=60 °
B
C
结论:等边三角形的内角都相等,且等于60 °.
等边三角形1 浙教版
等边三角性质探索:
2.等边三角形是轴对称图形吗?若是, 有几条对称轴?结论:等边三角形是轴对称图形, 有三条对称.
等边三角形1 浙教版
等边三角性质探索: 3.等边三角形每边上的中线,高和所对角的 平分线都三线合一吗?为什么?
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
等腰三角形的性质说课稿
《等腰三角形性质》说课教案
一、教材分析
1、教材的地位和作用
《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。 2、教材的教学目标: ①知识与技能目标:
掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。 ②过程与方法目标:
通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。 ③情感与态度目标:
通过合作交流培养学生团结协作、乐于助人的品质。 3、教学重点与难点:
重点:等腰三角形“等边对等角”和 “三线合一”性质的探究和应用。 难点:等腰三角形性质的推理证明。
二、学情分析
八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象
等腰三角形说课稿
等腰三角形说课稿
各位评委老师大家好,我是来应聘初中数学的X号考生。我今天抽到的题目是等腰三角形________(板书),我将主要从说教材,说学情,说学法、教法,说教学过程和说板书设计五个部分对本堂课的教学进行说明。 一 说教材
(一)教材的地位与作用
本节教材是人教版初中数学 ____八年级 上册第___十二章第___一节第一课时的内容,是初中数学的重要内容之一。主要学习等腰三角形等边对等角和等腰三角形的三线合一两个性质一方面,这是学生在学习了____轴对称性以及学习了全等三角形的判定的基础上对_三角形知识___的进一步深入和拓展;另一方面,又为学习_等边三角形和证明角相等,线段相等及两直线互相垂直___ 等知识奠定了基础,是进一步研究三角形____的工具性内容。因此本节课在教材中具有承上启下的作用。 (二)教学目标
根据对教材地位与作用的分析。在新课程改革理念的指导下,我制定了如下的三维教学目标:
1.知识与技能:理解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断和计算 2过程与方法
培养学生自主探索学习、协作学习以及分析
等腰三角形的性质定理
石家庄精英中学导学提纲初三数学使用时间:7月3日
第一章第一节你能证明它们吗?(1)
学习目标:
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理。学习重点:了解所学公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。学习难点:证明等腰三角形性质时辅助线做法。
预习指导:
1、先精读一遍教材P2-P4,用红笔进行勾画;再针对学案二次阅读教材,并回答问题;
2、找出自己的疑惑和需要讨论的问题,随时记录在课本或预习学案上,准备课上讨论质疑。
学习环节:
一、自学导航:
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?
4、列举我们已知道的公理:
(1)公理:同位角,两直线平行。
(2)公理:两直线,同位角。
(3)公理:的两个三角形全等。(简称,字母表示)(4)公理:的两个三角形全等。(简称,字母表示)(5)公理:的两个三角形全等。(简称,字母表示)(6)公理:全等三角形的对应边,对应角。
二、合作探究:
(一)两角及其中一角的对边对应相等的两个三角形全等。(AAS)
证明过程:
已知:
求证:
等腰三角形讲义1
讲义
等腰三角形
撰稿:徐长明 审稿:张扬 责编:孙景艳
一、 目标认知 学习目标:
通过观察发现等腰三角形的性质;掌握等腰三角形的识别方法,会用等腰三角形的性质进行简单的计算和证明;理解等腰三角形与等边三角形的相互关系;能够利用等腰三角形的识别方法判断等腰三角形;掌握等边三角形的特征和识别方法;掌握一般文字命题的解题方法
重点:
等腰三角形的性质与判定。
难点:
比较复杂图形、题目的推理证明
二、 知识要点梳理
知识点一:等腰三角形、腰、底边
有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角
如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
知识点二:等腰三角形的性质
1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).
性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).
2、这两个性质证明如下:
在△ABC中,AB=AC,如图所示.
讲义
作底边BC的高AD,则有
∴ Rt△ABD≌Rt△ACD.
∴ ∠B=∠C,∠1=∠2.BD=CD. 于是性质1、性质2均得证. 3、说明:
(1)①等
b等腰三角形性质说课教案
说 课 稿
单位:太和县民族中学 电话:15156837722 说课人:魏道琪
12.3.1 等腰三角形(人教版八年级上册)
【教材分析】
1、教材的地位和作用
三角形是最简单、最基本的几何图形,他是研究其他图形的
基础,作为特殊的三角形——等腰三角形,应用更为广泛,因此,
探索和掌握他的基本性质对学生更好的认识现实世界、发展空间
观念和推理能力都是很重要的。
本节课“等腰三角形”是学习了“轴对称”之后的一节新
课,通过本节课的学习可对前面所学知识进行复习与总结,又能
对后面学习的“等边三角形”起到承前启后的重要作用,同时对
后面学习的其他几何知识打下基础。
2、教材内容与教材处理
“等腰三角形”共两个课时,本节内容是第一课时,主要包
括等腰三角形的性质和应用。鉴于本节教学内容的特点:有知识、
有应用,并蕴涵着丰富的数学思维方法,因此,在教学中,即要
注重知识的探究,又要注重数学方法的渗透,更要注重学生能力
的培养。
3、教学目标
(1)知识技能:a、理解掌握等腰三角形的性质。
b、运用等腰三角形的性质进行证明和计
算。
(2)数学思考:a、观察等腰三角形的对称性,发展形象思
维。
b、通过实践、观察、证明等腰三角形的性
质,发展学生的推理能力。
(3)解决问题:a、通过观察等腰三