二次函数平行四边形存在性例题两定两动

“二次函数平行四边形存在性例题两定两动”相关的资料有哪些?“二次函数平行四边形存在性例题两定两动”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数平行四边形存在性例题两定两动”相关范文大全或资料大全,欢迎大家分享。

二次函数平行四边形存在性问题例题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数平行四边形存在性问题例题

一.解答题(共9小题)

1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

)三点.

2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

(1)求抛物线的解析式及点B坐标;

(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

第1页(共29页)

3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点

分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的

二次函数与平行四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数与平行四边形

1.已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。

(1)求抛物线的解析式;

(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形

为平行四边形,求D点的坐标;

2.如图,在坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A (1,0),B (0,2),

抛物线221

2bx x y 的图象过C 点.

(1)求抛物线的解析式;

(2)平移该抛物线的对称轴所在直线l .当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?

(3)点P 是抛物线上一动点,是否存在点P ,使四边形PACB 为平行四边形?若存在,求出P 点坐标;若不存在,说明理由.

3.如图,抛物线32bx ax y 与x 轴相交于点A (﹣1,0)、B (3,0),与y 轴相交于点C ,

点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC

分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF .

(1)求抛物线的解析式;

(2)当四边形ODEF 是平行四边形时,求点P 的坐标;(3)过点A 的直线将(2)中的平行四边形ODEF 分成面积相等

平行四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

19.2 平行四边形(第一课时)

教学目标:

知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力

过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理

的能力。

情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际

应用价值。

重点、难点:

重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.

教具准备:图片、三角板 课时安排:一课时 教学过程:

一、导入新课

引入:

等,都是平行四边形,平行四边形有哪些性质呢?

什么是平行四边形? 平行四边形的定义:

(1)定义: 两组对边分别平行的四边形叫做平行四边形。

在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本

(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”

二次函数中平行四边形通用解决方法

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

● 探究

(1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;

●归纳

无论线段AB处于直角坐标系中的哪个位置,

b)Bd)AB中点为Dy) 时,x=_________,y=___________;当其端点坐标为A(a,,(c,,(x,

(不必证明) ●运用

在图2中,一次函数y=x-2与反比例函数

的图象交点为A,B。

①求出交点A,B的坐标;

②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

1

以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊

二次函数之平行四边形存在性问题攻略 祝林华

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数之平行四边形存在性问题攻略

祝林华

(四川省广安市邻水县邻水实验学校,638500)

二次函数综合题是全国各省市每年必考的中考题型,与二次函数有关的存在性问题更是必考题型。笔者就以平行四边形的存在性为例,谈谈研究这类题型的基本思路和解题技巧。

在平行四边形有关存在性问题中,常会遇到这样两类探究性的问题:(1)已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(下文出现时简称“三定一动”);(2)已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(下文出现时简称“两定两动”);平行四边形的这四个点有可能是定序的,也有可能没有定序;由于定序较为简单,所以笔者就不再举例说明。学生在拿到这类题型时常常无从下笔,比较典型的两种错误:一是确定动点位置时出现遗漏,而是在具体计算动点坐标时出现方法不当或错解。实际上,这类题型的解法是有章可循的,就是要掌握好解决这类题型的基本思路和解题技巧。 一、基本思路:

(1)分清题型(属于三定一动还是两定两动,因为这两种题型的分类标准有所

不同);

(2)分类讨论且作图(利用分类讨论不重不漏的寻找动点具体位置); (3)利用几何特征计算(不同的几何存在性要用不同

平行四边形的判定说课稿(定)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

《平行四边形的判定》说课稿

一、 教材地位和作用:

本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。“承上”,首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理,本节课在引入新课时就是类比性质引入判定的。“启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神。

二、教学目标

(一)知识技能目标

1、运用类比的方法,通过学生的合作探究,得出平行四边形的两个判定方法。

2、理解平行四边形的这两种判定方法,并学会简单运用。

(二)数学思考

1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,进一

平行四边形经典例题 4-30

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

龙文教育学科老师个性化教案

中小学 1 对 1 课外辅导专家 2. (2011 昭通)如图所示, AECF 的对角线相交于点 O,DB 经过点 O,分别与 AE,CF 交 于 B,D. 求证:四边形 ABCD 是平行四边形.

3. (2011 徐州)如图,在四边形 ABCD 中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分 别为 E,F. (1)求证:△ ABE≌△CDF; (2)若 AC 与 BD 交于点 O,求证:AO=CO.

4. (2011 铜仁地区)已知:如图,在△ ABC 中,∠BAC=90° ,DE、DF 是△ ABC 的中位线, 连接 EF、AD.求证:EF=AD.

5. (2011 泸州)如图,已知 D 是△ ABC 的边 AB 上一点,CE∥AB, DE 交 AC 于点 O,且 OA=OC,猜想线段 CD 与线段 AE 的大小关系和位置关系, 并加以证明.

中小学 1 对 1 课外辅导专家 6. (2010 恩施州)如图,已知, ABCD 中,AE=CF,M、N 分别是 DE、BF 的中点. 求证:四边形 MFNE 是平行四边形.

7. (2009 永州)如图,平行四边形 ABCD,E、F 两点在对角线 BD

平行四边形复习讲义

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

中学1对1课外辅导专家

学科培训师辅导讲义

学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1

成功不是凭梦想和希望,而是凭努力和实践

平行四边形教学方案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

平行四边形(一)

【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、    导入新课

 

1.     目标导学。

(1)           什么是平行四边形?

(2) 平行四边形

二次根式勾股定理平行四边形综合试卷

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

绵竹实验学校第一次统一考试八年级(上) 数学试卷 一、选择题(每题3分,共30分) 1.21-的绝对值等于 ( ) A.2 2 C.22 22 2.三个正方形的面积如图(1),正方形A 的面积为( )

A. 6

B. 36

C. 64

D. 8 3. 在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个 4.一个三角形的三边长分别是3,4,5,则这个三角形最长边上的高是( ) A. 4 B. 310 C. 25 D. 512 3、函数y=11x -+中,自变量x 的取值范围是( ). A .x ≥-1 B .x>2 C .x>-1且x ≠2 D .x ≥-1且x ≠2 6、下列各组根式中,是可以合并的根式是( ) A 、318和 B 、133和 C 、22a b ab 和 D 、11a a +-和 7..一只蚂蚁沿直角三角形的边