隐圆几何最值问题
“隐圆几何最值问题”相关的资料有哪些?“隐圆几何最值问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“隐圆几何最值问题”相关范文大全或资料大全,欢迎大家分享。
隐圆及几何最值训练题
隐圆及几何最值训练题
一、利用“直径是最长的弦”求最值
1.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为( ) .
2.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,D为AC的中点,过点D作DE⊥DF,DE、DF分别交射线AB、AC于点E、F,则EF的最小值为 .
A
ED BCF
二、利用“定点定长存隐圆”求最值
3.(2012年武汉市中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.
y
B
CxOA
4.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是.
5.正方形ABCD中,BC=4,E,F分别为射线BC,CD上两个动点,且满足BE=CF,设AEF,BF交于G,则DG的最小值为(
隐圆及几何最值训练题
隐圆及几何最值训练题
一、利用“直径是最长的弦”求最值
1.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为( ) .
2.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,D为AC的中点,过点D作DE⊥DF,DE、DF分别交射线AB、AC于点E、F,则EF的最小值为 .
A
ED BCF
二、利用“定点定长存隐圆”求最值
3.(2012年武汉市中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.
y
B
CxOA
4.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是.
5.正方形ABCD中,BC=4,E,F分别为射线BC,CD上两个动点,且满足BE=CF,设AEF,BF交于G,则DG的最小值为(
动态最值问题 - 圆内最值问题
“一师一优课”
《动态最值问题——圆内最值问题》教学设计
西安爱知中学 郭晏铖
【学情分析】
在运动变化中求最值的问题灵活性较强,涉及的知识面较广,对学生思维能力要求较高,经常令学生束手无策。因此如何正确快速的求解成为学生学习中的难点。本节课前,学生已经学习了圆的基本知识,以及点和圆、直线和圆的位置关系。四班的同学在年级中属中等偏上水平,对于基本知识的学习掌握的较快,但缺乏应用的灵活性。与圆有关的最值问题可以变零散的知识为学生整体的认识,变重复枯燥的学习为新奇有趣的探索,在训练学生逻辑思维的同时,还能培养学生的探索能力 【教学方法】
对于圆中求最值问题,学生经常感到无从下手,处理此类题目首先要明确题目中运动的对象,然后就是根据按照题目要求作出运动过程中某一时刻的图象。现在学生普遍欠缺作图能力,因此我在题目的设置上也遵循由易到难的原则,从给出图形到简单作图再到复杂作图,让学生在这个过程中体会作图的重要性。
任何运动变化问题中总隐含着定量和不变关系,这也是解决这类问题的关键。在设计时我也注重设计情境,引导学生自己挖掘题目中的信息,找到这些关键点。从例1中的定量过渡到不变的位置关系再到不变的数量关系,剥茧抽丝,层层递进,从而体会探究的乐趣。
圆最值问题题型归纳
圆中最值问题
类型一 圆上一点到直线距离的最值问题
22(x?3)?y?1上任一点,则PQ的最小例1 已知P为直线y=x+1上任一点,Q为圆C:
值为 .
变题1:已知A(0,1),B(2,3),Q为圆C(x?3)2?y2?1上任一点,则SVQAB的最小值为 .
变题2:由直线y=x+1上一点向圆C:(x?3)2?y2?1引切线,则切线长的最小值为
变题3:已知P为直线y=x+1上一动点,过P作圆C:(x?3)2?y2?1的切线PA,PB,A、B为切点,则当PC= 时,?APB最大.
变题4:已知P为直线y=x+1上一动点,过P作圆C:(x?3)2?y2?1的切线PA,PB,A、B为切点,则四边形PACB面积的最小值为 .
例2已知圆C:x2?y2?2x?4y?3?0,从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有PM=PO,求使得PM取得最小值的点P坐标.
y C O x
类型二 利用圆的参数方程求最值(或几何意义)
例3若实数x、y满足x2?y2?2x?4y?0,求x-2y的最大值. 如在上例中,改为求
y?1,(
初中中考数学几何圆最值试卷
2016年03月30日LU的初中中考几何圆最值组卷
一.选择题(共10小题) 1.(2015?武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是( )
A.2﹣ B.C. D.﹣1 2.(2011?鄂州校级模拟)如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,
+1
则PC所能达到的最大值为( )
A. B. C.5 D.6 3.设P到等边△ABC两顶点A、B的距离分别为4和3,则PC所能达到的最大值是( ) A. B.5 C.7 D.8 4.(2014?洪山区一模)如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是( )
A.
5.(2013?武汉模拟)如图,点A是半径为3的⊙O内一定点,已知OA=一点,当∠OPA取最大值时,则sin∠OPA=( )
,P为⊙O上
B.
C.
D.
第1页(共8页)
A.
B.
C.
D.
6.(2015?厦门校级一模)已知点A在半径为3的⊙O内,OA等于1,点B是⊙O上一点,连接AB,当∠OBA取最大值时,AB长度
圆中的最值问题
拔高专题 圆中的最值问题
一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的 对称 点,对称点与另一点的连线与直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题
例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,
∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.
【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条
中考数学几何复习---最值系列之阿氏圆问题
2
中考数学几何复习---最值系列之阿氏圆问题
在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.
所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.
如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.
下给出证明
法一:首先了解两个定理
(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则
AB DB
AC DC
=
. F
E
D
C
B
A
证明:ABD ACD
S BD S
CD =
,ABD ACD
S AB DE AB S
AC DF AC ?=
=?,即AB DB
AC DC
=
(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则
AB DB
AC DC
=
. A
B
C
D
E
证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DB
AC DC
=
.
接下来开始证明步骤:
如图,PA:PB=
北京中考几何最值问题
几何最值问题
例题精讲
板块一、点到直线的距离最短
【例1】 o的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为
板块二、两点之间,线段最短
常见题型是在立体图形中求最小值,一般方法为把立体图形展开成平面图形,再根据两点间线段最短
【例2】 如图有一个圆柱体礼盒,高为10cm,底面直径为102cm,彩带从A点出发绕礼盒
侧面两周后粘贴在B出,则彩带的最短长度为
【例3】 如图,有一个长方体,它的长BC?4,宽AB?3,高BB1?5,一只小虫由A处出发,
沿长方体表面爬行到C1,这时小虫爬行的最短路径的长度是
D'C'A'B'DC
【例4】 如图所示,圆锥的母线长OA?6,底面圆的半径为2,一小虫在圆锥底面的点A处绕
圆锥侧面一周又回到点A处,则小虫所走的最短距离为
【例5】 如图所示,有一圆锥型粮堆,其主视图是边长为6m的正三角形△ABC,母线AC的
中点P处有一老鼠正在偷吃粮食,小猫从B点处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是
MSDC模块化分级讲义体系
初中数学.几何最值A级).几何最值的复习.教师版
Page 1 of 9
AB
OAPABC板块
平面几何的定值与最值问题
第二十三讲 平面几何的定值与最值问题
【趣题引路】
传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1.
这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢?
(1) (2)
解析 在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.
证明 如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR.
∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.
不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.
【知识延伸】
平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间
“与圆有关的最值问题”教案(最新)
“与圆有关的最值问题”教学案例 余浩平
教学背景: 本节课是与圆有关的一节复习课,由于在初中学习中接触过圆的一些基本知识,因而课前安排了两道有关圆的最值问题让学生练,为后面的教学奠定了基础。在随后的教学中,采取变式教学、一题多解、自主探索的教学方式,培养学生研究性学习。
教学目标:
从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
重点与难点:
学生通过观察、分析、猜想、类比等思想方法主动地发现问题和解决问题。
教学过程: 一、 引入新课 练习:
已知圆x2?y2?8x?2y?12?0内一点A(3,0),求经过点A的最长弦和最短弦所在的直线方程。
二、 新课
例: 已知圆的方程x2?y2?2及一点P(2,4),求圆上的动点与点P连线斜率
的最值?
题变: 将上面例题中的点P(2,4)改为P(0,4),则圆上的动点与点P连线斜率的
最值是否存在?若存在求出