一次函数的综合应用及答案题
“一次函数的综合应用及答案题”相关的资料有哪些?“一次函数的综合应用及答案题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一次函数的综合应用及答案题”相关范文大全或资料大全,欢迎大家分享。
一次函数25.5 一次函数的应用
《一次函数》常考题一次函数的应用
解答题
151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
﹣3
153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,
一次函数的应用
一次函数的应用
◆【课前热身】
1.在平面直角坐标系中,函数y??x?1的图象经过( )
A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限
2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A.12分钟
B.15分钟
C.25分钟
D.27分钟
3.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )
y(元)900300O3050(kg)x
A.20kg B.25kg C.28kg D.30kg 4.一次函数y?2x?3的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 ◆【考点聚焦】
??一般式y=kx+b(k?0)概念???正比例函数y=kx(
一元一次函数的综合应用
一元一次函数的综合应用
一.选择题:
1
1.已知点(-4,y1),(2,y2)都在直线y= - x+2上,则y1 y2大小关系是( )
2
A. y1 > y2 B. y1 = y2 C.y1 < y2 D. 不能比较 2.下列各图给出了变量x与y之间的函数是 ( )
3.直线y=kx+b经过一、二、四象限,则k、b应满足 ( ) A. k>0, b<0 B. k>0, b>0 C. k<0, b<0; D. k<0, b>0 4.已知一次函数y= ax+4与y = bx-2的图象在x轴上相交于同一点,则
11
A.4 B.-2 C. D. - 22
5.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
A
B
CD
o x o x o x o x y y y y a的值是( ) b
A B C D 6. (2008湖北仙桃等) 如图,三个大小相同的正方形拼成六边形点
出发沿着
→
→
→
→
,一动点
.运动过程中
从的面
方向匀速运动,最后到达点
积()随时间(t)变
0>0>一次函数的应用
一次函数的应用
姓名:
基础题型演练:
1、某出版社出版一种适合中学生阅读的科普读物,若该读物首次印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:
次函数,求这个一次函数的解析式(不要求写出x的取值范围);
(2)如果出版社投入48000元,那么能印读物多少册?
2、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7 m3的部分每立方米收费
1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(m3),应交水费为y(元).
(1)分别写出未超过7 m3和多于7 m3时,y与x的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10 m3,求这个月用水未超过7 m3的用户最多可能有多少户?
3、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km) 之间的函数关系图象. ①根据图象,写出当x≥3时该图象的函数关系式; ②某人乘坐2.5km,应付多少钱?
③某人乘坐13km,应付多少钱?
④若某人付车费30.8元,出租车行驶了多少千米?
例1:学校有一批复印任务,原来有甲复印社承接,按每100页40元计费.
一次函数应用题(提高题)
一次函数应用题
一.解答题(共10小题)
1.(2013?衢州)“五?一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.
(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?
2.(2013?黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3
一次函数经典应用题
一次函数
一次函数经典应用题
3.某加油站五月份营销一种油品的销售利润(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x为多少时,销售利润为4万元; (2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示. 根据图像信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
5.邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结
16一次函数的应用
一次函数的应用
一、选择题
1、(2012年福建福州质量检查)方程x2+3x-1=0的根可看作是函数y=x+3的图象与函1
数y=的图象交点的横坐标,那么用此方法可推断出方程x3-x-1=0的实数根x0所在的
x范围是
A.-1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3 答案:C
2、(2012山东省德州三模)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是( )
?x?y?2?0,?2x?y?1?0,?2x?y?1?0,y A.? B.? C.? ?3x?2y?1?0?3x?2y?1?0?3x?2y?5?03 ?x?y?2?0,D.?
2x?y?1?0?答案:D
2 1 ·P (1,1)O x -1 1 2 3 -1 (第7题图)
3、(2012上海市奉贤调研试题)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s?km?与所花时间t?min?之间的函数关系,下列说法错误的是( )
A.他离家8km共用了30min; B.他等公交车时间为6m
一次函数综合运用
一次函数的应用
1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),下图的折线表示x与y之间的函数关系。
(1)甲乙两地之间的距离为______km (2) 请解释图中点B的实际意义 (3)求慢车和快车的速度
2邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校,小王从A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计王道1分钟,二人与县城的距离s(千米)和小王从县城出发后的时间t(分),之间关系如图,假设二人交流的时间不计。
(1) 小王和李明第一次相遇时,距县城_____千米 (2) 求小王从县城出发到返回县城所用的时间 (3) 李明从A村到县城公用多少时间?
3甲乙两车分别从A,B两地同时相向而行,匀速开往对方所在地。图1表示甲乙两车离A地的路程y(km)与出发时间x(h)的函数图象,图2表示甲乙两车之间的路程y(km)与出发时间x(h)的函数图象。
(1)A,B两地的为_______km, h的实际意义是_________
一次函数应用题—行程问题
一慢车和一快车沿相同路线从A地到相距120千米的B地,所行地路程与时间的函数图象如图所示.试根据图象,回答下列问题:
(1)慢车比快车早出发 小时,快车比慢车少用 小时到达B地; (2)根据图象分别求出慢车和快车路程与时间的解析式. (3)快车用了多少时间追上慢车;此时相距A地多少千米?
周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远? (3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路
甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答: (1)甲车出发多长时间后被乙车追上?
(2)甲车与乙车在距离A地多远处迎面相遇? (3)甲车从A地返回的速度多大时,才能比乙车
《一次函数的应用》教学设计
一次函数的应用
1、教学容
本节课是学习了人教版义务教育课程标准实验教材《数学》八年级上册第十一章《一次函数》后设计的一节复习课。主要学习容是把实际问题建立函数模型和根据函数图象的信息,运用数形结合的思想来解决问题。
2、学生分析
学习本节课前学生已经学习了一次函数的概念、图象、性质以及一次函数与方程(组)、不等式的关系,对一次函数的知识已经有了全面的了解。但还不能灵活运用所学知识来解决实际问题,特别是把实际问题建立函数模型的能力和运用数形结合的思想来解决问题的意识还比较弱。学生最感兴趣的是用函数知识解决发生在身边的实例。
3、设计思想
本节课的特色是充分应用信息技术(如多媒体课件,播放翔奥运夺冠过程的录像,播放“龟兔赛跑”的Flash动画等)来创设问题的情境,激发学生的学习兴趣,激活学生的思维。本节课精心设计了七个题目,由浅入深,让学生探究,把学生的思维不断引向深入……,通过老师的点拨使学生的思维得到升华,努力培养学生掌握基本的数学思想,提高学生的数学活动能力。在整个教学过程中,贯彻“教师为主导,学生为主体,探索为主线,思维为核心”的教学思想。通过引导学生积极探索、讨论和交流,使全体学生能充分动手、动脑、动口,参与教学的整个过程,使数学课堂真正成为学生