解三角形求边长取值范围

“解三角形求边长取值范围”相关的资料有哪些?“解三角形求边长取值范围”相关的范文有哪些?怎么写?下面是小编为您精心整理的“解三角形求边长取值范围”相关范文大全或资料大全,欢迎大家分享。

解三角形中相关的取值范围问题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

解决与三角形相关的取值范围问题

例1:在锐角ABC中,A?2B,则的取值范围是

例2:若ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sinB?cosB的取值范围是

,ccosA例3:在ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosBcb成等差数列。(1)求B的大小。 (2)若b?5,求ABC周长的取值范围。

例4:在ABC中,a2?b2?c2?ab,若ABC的外接圆半径为

ABC的面积的最大值为 2332,则2

例5:(2008,江苏)满足AB?2,AC?2BC的ABC的面积的最大值是

例6:已知角A,B,C是ABC三个内角,a,b,c是各角的对边,向量

A?B5A?B9m?(1?cos(A?B),cos)n?(,cos),且m?n? ,

2828(1)求tanA?tanB的值。 (2)求

通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以

解三角形中相关的取值范围问题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

解决与三角形相关的取值范围问题

例1:在锐角ABC中,A?2B,则的取值范围是

例2:若ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sinB?cosB的取值范围是

,ccosA例3:在ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosBcb成等差数列。(1)求B的大小。 (2)若b?5,求ABC周长的取值范围。

例4:在ABC中,a2?b2?c2?ab,若ABC的外接圆半径为

ABC的面积的最大值为 2332,则2

例5:(2008,江苏)满足AB?2,AC?2BC的ABC的面积的最大值是

例6:已知角A,B,C是ABC三个内角,a,b,c是各角的对边,向量

A?B5A?B9m?(1?cos(A?B),cos)n?(,cos),且m?n? ,

2828(1)求tanA?tanB的值。 (2)求

通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以

三角形边长计算公式

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角形边长计算公式

发表——斜三角形三边长的经典计算公式:用《程形学定边L变

大写的是角,小写的是边。

现在你是已知A、B 、C和c求a、b。求出两边后相加即可。

我们研究的是定边长L变

1:正弦定理:已知三角形的两角与一边,求其它的角和边。

2:余弦定理:已知三角形的两边与其中一边的对角,求其它的角和边;的应用上。

3:当斜三角形三个边长已知两个边长不用角就无法计算求解第三边长。

4:已知斜三角形的一个边长和一个角就无法计算其他两个边长和两个角。

5:已知斜三角形的一个角,可求出斜三角形的其它的两个角,就更无法计算了。

《程形学自然法则》是研究:

3:当斜三角形三个边长已知两个边长不用角计算求解第三边长。

任意三角形求解经典公式

三角形边长计算公式

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

三角形边长计算公式

发表——斜三角形三边长的经典计算公式:用《程形学定边L变

大写的是角,小写的是边。

现在你是已知A、B 、C和c求a、b。求出两边后相加即可。

我们研究的是定边长L变

1:正弦定理:已知三角形的两角与一边,求其它的角和边。

2:余弦定理:已知三角形的两边与其中一边的对角,求其它的角和边;的应用上。

3:当斜三角形三个边长已知两个边长不用角就无法计算求解第三边长。

4:已知斜三角形的一个边长和一个角就无法计算其他两个边长和两个角。

5:已知斜三角形的一个角,可求出斜三角形的其它的两个角,就更无法计算了。

《程形学自然法则》是研究:

3:当斜三角形三个边长已知两个边长不用角计算求解第三边长。

任意三角形求解经典公式

解三角形(教案2)

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

安丘一中2011-2012学年高三数学学案 诚者,天之道也;诚之者,人之道也。

课题:解三角形 安丘一中 李钧

目标:掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;

重点、难点:(1)利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点;(2)常与三角形等变换相结合,综合考查三角形中的边与角、三角形形状的判断等;(3)在平面解析几何、立体几何中常作为工具求角和两点间的距离问题。

【课内探究】

题型一:正弦定理、余弦定理的简单应用

〖例1〗在ΔABC中,已知a=7,b=3,c=5,求最大角和sinC 解答:由已知得coAs?b?c?2bc2222a>c>b,∴A

2为最大角。由余弦定理得:1232a3?5??2??37??52。又∵

0?A??1?A8?。 0??A,??1?方法一:由正弦定理得

asinA?csinC,∴sinC?csinAa5??32?53714,因此最

大角A为120?,sinC?531422。

方法二:cosC?a?b?c2ab2?7?3?52?7?35314222?1114。∵C为三角形的内角,∴C为锐

角。sinC=1?cosC?21

三角函数解三角形题型归类

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

WORD完美格式

三角函数解三角形题型归类

一知识归纳:

(一)任意角、弧度制及任意角的三角函数 1.角的概念

(1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 .

(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S= .

(3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制

(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 . π(2)角度制和弧度制的互化:180°=π rad,1°= rad,

180

?180?

?1 rad=??π?°. ??

1(3)扇形的弧长公式:l=|α|·r,扇形的面积公式:S=lr2

三角函数解三角形题型归类

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

WORD完美格式

三角函数解三角形题型归类

一知识归纳:

(一)任意角、弧度制及任意角的三角函数 1.角的概念

(1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 .

(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S= .

(3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制

(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 . π(2)角度制和弧度制的互化:180°=π rad,1°= rad,

180

?180?

?1 rad=??π?°. ??

1(3)扇形的弧长公式:l=|α|·r,扇形的面积公式:S=lr2

解三角形复习课 教案

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

解三角形复习课

肇源三中 纪秀娟

课题 教 学 目 标 解三角形复习课 (1)运用正弦定理、余弦定理,解决一些简单的三角形度量问题。 (2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。 (3)培养学生分析问题、解决问题,自主探究的能力 重点:(1)正弦定理与余弦定理的应用。 (2)题目的条件满足什么形式时适合用正弦、余弦定理解决问题。 难点:(1)利用正弦定理求解过程中一解、二解的情况。 (2)从实际问题抽象出数学问题。 (3)选择适当的正弦、余弦定理、面积公式解决解三角形问题。 教 学 重 点 与 难 点 教 学 过 程 观察引入: A C 让学生观察思考:在△ABC中,请给出适当的条件,并根据你给出的条件可以得到什么结论?(培养学生自主探究和学习的能力) 根据学生所答,教师归纳总结正弦定理,余弦定理公式: B abc  ???2R (正弦定理) sinAsinBsinC 1、 正弦定理可以用来解两种类型

解三角形单元教学设计

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

《解三角形》单元教学设计

甘肃省民勤县第四中学 白茂军 13893532527

【数学分析】

解三角形一章是在初中“解直角三角形”和前面的“向量”相关内容基础上构建起来的,定理本身的应用十分广泛。解三角形是三角函数知识和平面向量知识在三角形中的具体运用,是将生产、生活实际问题转化为解三角形计算问题的重要工具,具有广泛的应用价值。解三角形问题和大量需要用解三角形为工具的实际问题的存在,以及数学本身和实际问题都在促使正弦定理,余弦定理的产生。在实际工作中经常遇到很多测量问题,如:在航行途中测出海上两个岛屿之间的距离;测量底部不可到达的建筑物的高度;在水平飞行中的飞机上测量飞机下方山顶的海拔高度;测量海上航行的轮船航速和航向等。本章知识的介绍将很好的解决这些问题,从而提高学生解决实际问题的能力。

【教育分析】

解三角形一章的教育价值主要体现在:

1.正弦、余弦定理的证明,培养了学生实践操作能力,以及提出问题、解决问题等研究性学习的能力,进一步拓展学生的数学活动空间,发展学生“做数学”“用数学”的意识,激发学生的学习兴趣。

2.体现数学与经济、生活等现实世界的联系,培养和发展学生利用解三角形的知识解决身边实际问题的能力。在解三

三角形、等腰三角形以及全等三角形的证明

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

儒洋教育学科教师辅导讲义

学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:

(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质

(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°

(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。

4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S