HLM多层线性模型
“HLM多层线性模型”相关的资料有哪些?“HLM多层线性模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“HLM多层线性模型”相关范文大全或资料大全,欢迎大家分享。
多层线性模型的解读:原理与应用
多层线性模型的解读:原理与应用
浙江师范大学心理研究所 陈海德
Chenhaide351@126.com
一、多层数据结构的普遍性
多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。
传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。学生数据层中,不同变量之间的关系可能因班级的不同而不同。因此,学生层的差异可以解释为班级层的变量。
另一种类型的两层嵌套数据来自纵向研究数据,不同时间观测数据形成了数据结构的第一层,而被试之间的个体差异形成了第二层。可以探索个体在发展趋势上的差异。 二、传统技术处理多层数据结构的局限
如果把变量分解到个体水平,在个体水平上分析。但是我们知道这些学生是来自同一班级的,不符合观察独立原则。导致个体间随机误差相互独立的假设不能满足。
如果把个体变量集中到较高水平,在较高水平上进行分析。这样丢弃了组内信息,而组内变异可能占了大部分。 三、原理
☆水平1(学生)的模型与传统的回归模型类似,所不同的是回归方程的截距和斜率不
多层线性模型的解读:原理与应用
多层线性模型的解读:原理与应用
浙江师范大学心理研究所 陈海德
Chenhaide351@126.com
一、多层数据结构的普遍性
多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。
传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。学生数据层中,不同变量之间的关系可能因班级的不同而不同。因此,学生层的差异可以解释为班级层的变量。
另一种类型的两层嵌套数据来自纵向研究数据,不同时间观测数据形成了数据结构的第一层,而被试之间的个体差异形成了第二层。可以探索个体在发展趋势上的差异。 二、传统技术处理多层数据结构的局限
如果把变量分解到个体水平,在个体水平上分析。但是我们知道这些学生是来自同一班级的,不符合观察独立原则。导致个体间随机误差相互独立的假设不能满足。
如果把个体变量集中到较高水平,在较高水平上进行分析。这样丢弃了组内信息,而组内变异可能占了大部分。 三、原理
☆水平1(学生)的模型与传统的回归模型类似,所不同的是回归方程的截距和斜率不
多层线性模型的解读:原理与应用
多层线性模型的解读:原理与应用
浙江师范大学心理研究所 陈海德
Chenhaide351@126.com
一、多层数据结构的普遍性
多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。
传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。学生数据层中,不同变量之间的关系可能因班级的不同而不同。因此,学生层的差异可以解释为班级层的变量。
另一种类型的两层嵌套数据来自纵向研究数据,不同时间观测数据形成了数据结构的第一层,而被试之间的个体差异形成了第二层。可以探索个体在发展趋势上的差异。 二、传统技术处理多层数据结构的局限
如果把变量分解到个体水平,在个体水平上分析。但是我们知道这些学生是来自同一班级的,不符合观察独立原则。导致个体间随机误差相互独立的假设不能满足。
如果把个体变量集中到较高水平,在较高水平上进行分析。这样丢弃了组内信息,而组内变异可能占了大部分。 三、原理
☆水平1(学生)的模型与传统的回归模型类似,所不同的是回归方程的截距和斜率不
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
经典线性回归模型
第二章 经典线性回归模型:双变量线性回归模型 回归分析概述 双变量线性回归模型的参数估计 双变量线性回归模型的假设检验 双变量线性回归模型的预测 实例
引子: 中国旅游业总收入将超过3000亿美 元吗?从2004中国国际旅游交易会上获悉,到2020年,中国旅游 业总收入将超过3000亿美元,相当于国内生产总值的8% 至11%。(资料来源:国际金融报2004年11月25日第二版) ◆是什么决定性的因素能使中国旅游业总收入到2020年达到 3000亿美元? ◆旅游业的发展与这种决定性因素的数量关系究竟是什么?
◆怎样具体测定旅游业发展与这种决定性因素的数量关系?
一、回归与相关(对统计学的回顾)
1. 经济变量间的相互关系◆确定性的函数关系
Y f (X )
◆不确定性的统计关系—相关关系
Y f (X ) ◆没有关系
(ε为随机变量)
2.相关关系◆ 相关关系的描述 相关关系最直观的描述方式——坐标图(散布图)
Y
X
◆相关关系的类型 ● 从涉及的变量数量看简单相关 多重相关(复相关)
● 从变量相关关系的表现形式看线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
多层时间序列回归模型方法综述
多层统计模型方法综述
目前为止,研究多层统计模型的学者有很多,但大家基本上接受两组人分别独立开发出同一模型的结果,这两组人分别有各自分析的成熟的软件。一组是S.Raudenbush与A.Bryk建立的hierarchical linear model,开发的软件为HLM。另一组是由H.Goldstein定义的multilevel models,开发出的软件为MLwiN(早期版本称ML3,MLn)。
多层统计模型有许多名称,有multilevel models,hierarchical linear model,random-effect
model,random
coefficient
model,various
component
model,mixed-effect model,empirical Bayes model.
多层统计模型主要用于对横截面数据(即面板数据)以及层次结构数据的研究。详情见下表:
多层统计模型 横截面数实例 临床实验和动物实验的重复测量 多中心临床试验研究 层次结构数据 模型 多水平主成分分析 多水平判别分析 多水平logistic回归 多水平Poisson回归 多水平时间序列分析 多元多水平模型 多水平结构方程
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
线性规划模型研究
线性规划模型研究
摘要:探讨线性规划在生活中的应用。方法:了解线性规划法及其特点;分析生活中某些问题适合利用线性规划求解的缘由;求解出所需值,同时观察其现实意义。结果:由于生活中很多关于利益最大化、成本最小化的问题,所以线性规划在生活中应用很广泛。而且线性规划求解方法多样;求出的结果能很好反映现实问题。结论:线性规划模型在生活中应用广泛。 关键词:线性规划;生活问题;求解相关值
Linear programming model
Abstract: discuss the application of linear programming in life. Method: to investigate the linear programming method and its characteristics; Analysis of some problems in the life is suitable for using the linear programming to solve the reason; Solving the required value and observe its realistic significance.
多元线性回归模型原理
研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。
计算公式如下:
设随机y与一般变量x1,x2,?xk的线性回归模型为:
y??0??1x1??2x2??kxk??
其中?0,?1,??k是k?1个未知参数,?0称为回归常数,?1,??k称为回归系数;
y称为被解释变量;x1,x2,?xk是k个可以精确可控制的一般变量,称为解释变量。
当p?1时,上式即为一元线性回归模型,k?2时,上式就叫做多元形多元回归模型。?是随机误差,与一元线性回归一样,通常假设
?E(?)?0?2 var(?)???同样,多元线性总体回归方程为y??0??1x1??2x2????kxk
系数?1表示在其他自变量不变的情况下,自变量x1变动到一个单位时引起的因变量y的平均单位。其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。
????x???x?????x ???多元线性样本回归方程为:y01122kk
多元线性回归方程中回归系数的估计同样可以采
实验3 多元线性回归模型
实验3 多元线性回归模型
一、实验名称:多元线性回归模型.
二、实验目的:掌握多元线性回归模型的建模方法,并会利用Matlab作统计分析与检验. 三、实验题目:设某公司生产的商品在市场的销售价格为x1(元/件)、用于商品的广告费用为x2(万元)、销售量为y(万件)的连续12个月的统计数据如表.
月份 1
2 3 4 5 6 7 8 9 10 11 12
销售价格x1
100 90 80 70 70 70 70 65 60 60 55 50
广告费用x2
5.50 6.30 7.20 7.00 6.30 7.35 5.60 7.15 7.50 6.90 7.15 6.50
销售量y 55 70 90 100 90 105 80 110 125 115 130 130
四、实验要求:
1、建立销售量y关于销售价格x1和广告费用x2的多元线性回归模型.
1、绘制散点图,可以直观地看出y与x1,x2分别呈线性关系,所以采用多元线性回归模型:y=β0+β1*x1+β2*x2+ε 源程序: clear
x1=[100;90;80;70;70;70;70;65;60;60;55;50];
x2=[5.50;6.30;7.20;7.00;6.30;7.35;5.60;7.15;7.50