气体的pvt关系总结

“气体的pvt关系总结”相关的资料有哪些?“气体的pvt关系总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“气体的pvt关系总结”相关范文大全或资料大全,欢迎大家分享。

气体的PVT关系

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

延安职业技术学院教案

序 号 1 周 次 绪 论 第一章 第一节 低压气体P-V-T的关系 1、了解物化研究的主要内容、研究方法、学习方法; 教 学 目 的 2、理解低压下气体的基本定律; 3、了解理想气体的概念、理想气体状态方程。 教 学 重 点 教 学 难 点 使 用 教 具 课 外 作 业 课 后 体 会 低压下气体的基本定律、理想气体状态方程 低压下气体的基本定律 预习下次课内容P33,1、2、4、5 所讲内容学生能够接受 一 授课形式 讲 授 授课章节名称 授 课 主 要 内 容 绪 论 一、物理化学的目的和内容 定义:物理化学是从物质的物理现象和化学现象的联系入手来探究化学变化基本规律的一门科学,在实验方法上也主要是采用物理学中的方法。 研究方向: 1、化学变化的方向和限度问题(化学热力学) 一个化学反应在指定的条件下能否朝着预定的方向进行?如果这个反应能够进行,则它将达到什么限度?外界条件如温度、压力、浓度等对反应有什么影响?如何控制外界条件使我们所设计的新的反应途径能按所预定的方向进行?对于一个给定的反应,能量的变化关系怎样?它究竟能为我们提供多少能量? 2、化学反应的速率和机理问题(化学动力学) 一个化学

流体的PVT关系

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

化工热力学之流体PVT关系

第二章 p-V-T关系和状态方程

The p-V-T Relationship and Equation of State

2.1 2.2 2.3 2.4 纯物质的p-V-T 状态方程 对应态原理 混合法则

化工热力学之流体PVT关系

热力学最基本性质有两大类

p, V , T,x

怎么办??? U,H, S,G

易测

从容易获得的物性数据(p、V、 T、x)来推算较难测定的数据 ( H,U,S,G )

难测!

但存在问题: 1) 有限的p-V-T数据,无法全面了解流体的p-V-T 行为 2) 离散的p-V-T数据,不便于求导和积分,无法获得数据点 以外的p-V-T 和H,U,S,G数据

如何解决?

化工热力学之流体PVT关系

引言

如何解决?

只有建立能反映流体p-V-T关系的解析形式才能解决。 这就是状态方程Equation of State(EOS)的由来。 EOS反映了体系的特征,是推算实验数据之外信息和其 它物性数据不可缺少的模型。 流体p-V-T数据+状态方程EOS是计算热力学性质最重要 的模型之一。 EOS+CPig可推算所有的热力学性质。

化工热力学之流体PVT关系

2.1 纯物质的p-V-T关系

p-V-T立体

物化第一章 气体的pVT性质-含答案

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

第一章 气体的pVT性质——习题

一、填空题

1.温度为400K,体积为2m3的容器中装有2mol的理想气体A和8mol的理想气体B,则该混合气体中B的分压力pB=( )KPa。13.302

pB?nBRT/V=(8×8.314×400/2)Pa =13.302 kPa

或pB?pyB???nA?nB?RT/V?yB

???8?2??8.314?400/2? Pa?0.8?13.302 kPa

2.在300K,100KPa下,某理想气体的密度ρ=80.8275×10-3kg·m-3。则该气体的摩尔质

ol量M=( )。2.016?10kg?m?3-1

pV?nRT??m/M?RT???V/M?RT

M??RT/p?80.827?10-3kg?m-3?8.314J?mol-1?K-1?300K/100?103Pa ?2.016?10?3kg?mol-1

3.恒温100°C下,在一带有活塞的气缸中装有3.5mol的水蒸气H2O(g),当缓慢地压缩到压力p=( )KPa是才可能有水滴H2O(l)出现。101.325

因为100℃时水的饱和蒸汽压为101.325kPa,故当压缩至p=101.325kPa时才会有水滴H2O(l)出现

物化第一章 气体的pVT性质-含答案

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

第一章 气体的pVT性质——习题

一、填空题

1.温度为400K,体积为2m3的容器中装有2mol的理想气体A和8mol的理想气体B,则该混合气体中B的分压力pB=( )KPa。13.302

pB?nBRT/V=(8×8.314×400/2)Pa =13.302 kPa

或pB?pyB???nA?nB?RT/V?yB

???8?2??8.314?400/2? Pa?0.8?13.302 kPa

2.在300K,100KPa下,某理想气体的密度ρ=80.8275×10-3kg·m-3。则该气体的摩尔质

ol量M=( )。2.016?10kg?m?3-1

pV?nRT??m/M?RT???V/M?RT

M??RT/p?80.827?10-3kg?m-3?8.314J?mol-1?K-1?300K/100?103Pa ?2.016?10?3kg?mol-1

3.恒温100°C下,在一带有活塞的气缸中装有3.5mol的水蒸气H2O(g),当缓慢地压缩到压力p=( )KPa是才可能有水滴H2O(l)出现。101.325

因为100℃时水的饱和蒸汽压为101.325kPa,故当压缩至p=101.325kPa时才会有水滴H2O(l)出现

气体的压强与体积的关系

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

第六章 B 气体的压强与体积的关系

【教材分析】

本节是气体性质部分的第一节内容的第二课时,在第一课时中已学习了气体的状态参量和压强的计算,第二课时重点探究在等温情况下,一定质量的气体的压强与体积的关系,即波意尔定律,本节在探究过程中的经历和收获将为下一节:气体的压强与温度的关系、体积与温度的关系的探究做好全方位的铺垫,故这节课在整章知识中有承上启下的作用。

【学情分析】

1.高一学生认识事物的特点是:开始从具体的形象思维向抽象逻辑思维过渡,但思维还常常与感性经验直接相联系,仍需具体形象实验,情景来支持。

2.学生在初中时已学习过有关压强的概念、液体的压强、连通器等物理概念、物理模型,在高中阶段要定性猜想,利用DIS实验系统定量探究一定质量的气体,在温度不变的情况下,气体的压强和体积的关系 【教学目标】 1、知识与技能

(1)能从分子动理论角度知道体积与压强的微观情景

(2)通过DIS实验采集数据、并对实验数据进行分析的过程,学会利用DIS系统研究气体不同参量之间的内在关系,提高应用信息技术进行物理实验,分析处理数据,归纳总结规律的能力

(3)理解玻意耳定律的内容,能运用玻意耳定律解释生活中的相关现象 2、过程与方法

(1)通过DIS实验进

气体的压强与体积的关系

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

气体的压强与体积的关系(一)

一、填空题

1.气体的状态参量是指、和。

2.水的沸点是100℃,用热力学温标表示为K。当水的温度从0℃升高到20℃时,用热力学温标表示其升高的温度为K。

3.通常温度是表示物体的物理量,从分子动理论观点看,温度是物体内部的标志。容器壁面积上受到的气体压力就是气体压强,气体对容器壁有压力,从分子动理论观点看,这是由于容器中而产生的。

4.一根直玻璃管,用长为10 cm的水银柱封住一段空气柱,外界大气压强相当于76cm水银柱产生的压强,则管子竖直放置、开口向上时,管内空气柱的压强为cmHg;管子竖直放置、开口向下时,管内空气柱的压强为cmHg;管子与水平面成30°角放置、开口向下时,管内空气柱的压强为cmHg;管子与水平面成30°角放置、开口向上时,管内空气柱的压强为cmHg。

5.如图所示,各玻璃管内封闭的液体都是水银,水银密度为13.6×103kg/m3,外界大气压强相当于76cm水银柱产生的压强,两端水银面的高度差均为10cm,则各玻璃管内封闭气体A的压强分别为:

(1)pA= cmHg= Pa。 (2)pA= cmHg= Pa。 (3)pA= cmHg= Pa。 (4)pA=

CO2临界状态观测及PVT关系测试

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

专业: 化学工程与工艺 姓名: 实验报告

学号: 日期: 地点: 课程名称: 专业实验 指导老师: 李昌圣 成绩:__________________ 实验名称: CO2临界状态观测及PVT关系测试 实验类型:__________同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得

一、实验目的

1.了解CO2临界状态的观测方法,增强对临界状态的感性认识。

2.掌握CO2的P-V-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 3.加深对流体的凝结、汽化、饱和状态等热力学基本概念的理解。 4.掌握有关仪器的正确使用方法。

二、实验设备及原理

装 1.整个实验装置由压力台,恒温器和实验台本体及其防护罩三大部分组成,如图1所示。 实验台本体如图2所示。

订 线

2.对简单可压缩热力系统,当工质处于平衡状态时,其状态参数P、V、T有:

F(P, V, T)=0

瓶装气体的基础知识——气体体积与温度、压力的关系

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

瓶装气体的基础知识——气体体积与温度、压力的关系

2004-5-29

瓶装气体的基础知识——气体体积与温度、压力的关系

气体的体积、温度、压力是确定气体状态的三个基本参数。要研究气体物理状态的变化,进行工程上的计算,就要研究这三个基本状态参数间的关系。而表示其三个基本状态参数间的数学关系式就是气体状态方程式,其方程式又有理想气体状态方程式和真实气体状态方程式之分。 一、理想气体状态方程式

所谓理想气体,是人们为了在研究气体状态方程式时,忽略气体某些性质对基本状态参数计算的影响,而提出的一种假想的气体。此种气体的假设条件为:1.气体分子本身不占有体积;2.气体分子间没有引力。当实际气体的压力很低、温度较高时,由于气体的密度很小,其分子本身所占的体积与气体的全部空间之比小到可以忽略不计,而气体分子间的作用力也由于分子间的距离较大亦可 忽略时,即可近似地作为理想气体进行计算。 前人曾总结出一些联系压力(P)、体积(V)、温度(T)和物质的量(n)之间关系的经验规律,现分述如下: 1,波义耳-马略特定律

波义耳—马略特定律可表述为:一定量的气体在等温时的容积(V)与压力

瓶装气体的基础知识气体体积与温度压力的关系

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

瓶装气体的基础知识——气体体积与温度、压力的关系

2004-5-29

瓶装气体的基础知识——气体体积与温度、压力的关系

气体的体积、温度、压力是确定气体状态的三个基本参数。要研究气体物理状态的变化,进行工程上的计算,就要研究这三个基本状态参数间的关系。而表示其三个基本状态参数间的数学关系式就是气体状态方程式,其方程式又有理想气体状态方程式和真实气体状态方程式之分。

一、理想气体状态方程式

所谓理想气体,是人们为了在研究气体状态方程式时,忽略气体某些性质对基本状态参数计算的影响,而提出的一种假想的气体。此种气体的假设条件为:1.气体分子本身不占有体积;2.气体分子间没有引力。当实际气体的压力很低、温度较高时,由于气体的密度很小,其分子本身所占的体积与气体的全部空间之比小到可以忽略不计,而气体分子间的作用力也由于分子间的距离较大亦可忽略时,即可近似地作为理想气体进行计算。

前人曾总结出一些联系压力(P)、体积(V)、温度(T)和物质的量(n)之间关系的经验规律,现分述如下:

1,波义耳-马略特定律

波义耳—马略特定律可表述为:一定量的气体在等温时的容积(V)与压力(P)成反比。即:

式中:V1,V2旷:分别是定量的气体在压力Pl、P2时的容积。

2.查理定律

查理定律

PVT实验拟合

标签:文库时间:2024-07-11
【bwwdw.com - 博文网】

PVT实验拟合是个难点。大家都知道组分模型比黑油模型复杂的多。其实复杂就复杂在PVT状态方程这方面。如果你对状态方程认识很清楚,那你做组分模拟就要容易的多。如果你根本不懂EOS状态方程,那你还是不要做组分模拟。要做好PVT实验的拟合,你至少需要掌握以下几方面知识: EOS状态方程 流体取样 PVT实验流程

EOS状态方程是基础。EOS状态方程有多种类型,比如二参数PR3状态方程,三参数PR3状态方程,二参数SRK状态方程,三参数SRK状态方程,RK,ZJ,SW状态方程等。不同的状态方程有时候计算出来的结果差别可能很大,这其中最常用的是三参数PR3状态方程。你应该先学习EOS状态方程,这样你才能知道在拟合时你调整组分的临界压力,临界温度,偏心因子,Z因子,二元相关系数(BIC)等参数时是如何影响计算结果的。你应该知道对于纯组分(C1,C2,C3,iC4,nC4,iC5,nC5,C6)而言,随着组分摩尔分子量的增加,组分的临界温度,沸点,临界体积,偏心因子,液体密度都是增加的,而临界压力和临界Z因子随组分摩尔分子量的增加是减小的。如果在你拟合以后这种单调性发生了变化,那你的拟合肯定有问题。 流体取样有井底取样和井口取样,在做井底取样时要保证样品在