zemax光纤耦合设计

“zemax光纤耦合设计”相关的资料有哪些?“zemax光纤耦合设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“zemax光纤耦合设计”相关范文大全或资料大全,欢迎大家分享。

zemax光纤耦合

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

设计前的准备

Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本

本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示:

供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e 数值孔径 0.14 纤芯直径 8.3μm

模场直径@1.31μm 9.2±0.4μm

微透镜阵列,SUSS MicroOptics SMO39920 基片材料 熔融石英 基片厚度 0.9mm 内部透过率 >0.99 透镜直径 240μm 透镜节距 250μm

曲率半径 330μm

圆锥常数(Conic constant) 0 数值孔径 0.17

附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。请注意一下几点:

物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化;

透镜到像面的距离使用了Pick-up solve,以确保和

如何在Zemax下模拟单模光纤的光束耦合

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

如何在Zemax下模拟单模光纤的光束耦合

设计前的准备

Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。 我们同时提供本文的的日文版本

本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。如下图所示:

供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e

数值孔径 0.14 纤芯直径 8.3μm

模场直径@1.31μm 9.2±0.4μm

微透镜阵列,SUSS MicroOptics SMO39920

基片材料 熔融石英 基片厚度 0.9mm 内部透过率 >0.99 透镜直径 240μm 透镜节距 250μm 曲率半径 330μm

圆锥常数(Conic constant) 0 数值孔径 0.17

附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。请注意一下几点:

物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。后面经过优化过程时候,这个尺寸还会发生变化; 透镜到像面的距离使用了P

光纤耦合连接器

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号

CN102023343A

(43)申请公布日 2011.04.20(21)申请号CN200910307274.4

(22)申请日2009.09.18

(71)申请人鸿富锦精密工业(深圳)有限公司;鸿海精密工业股份有限公司

地址518109 广东省深圳市宝安区龙华镇油松第十工业区东环二路2号

(72)发明人林俊宇

(74)专利代理机构

代理人

(51)Int.CI

G02B6/38;

权利要求说明书说明书幅图

(54)发明名称

光纤耦合连接器

(57)摘要

一种光纤耦合连接器,其包括外壳和设置

在所述外壳上的透镜,所述外壳具有盲孔和贯穿

所述盲孔的通孔,所述通孔的中心轴垂直所述盲

孔的中心轴,所述透镜位于所述盲孔的底端,所

述盲孔用来收容光纤,所述通孔内沿其径向设置

有肋条用于加强所述外壳的强度。

法律状态

单管光纤耦合 - 图文

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

976nm单管高功率光纤耦合模块

摘 要

随着光纤激光器在工业领域的快速发展,对高功率,高亮度泵浦模块提出迫切要求。单管光纤耦合模块作为泵浦源在光纤激光器系统中具有独一无二的优势,因为它们具有高的功率转换效率和已经被证明的高可靠性,并且无需复杂水冷设备,使得整个系统的使用和维护成本大大降低。

本文首先确定了耦合所用激光器芯片及光束特性。为使芯片具有高功率密度、高可靠性,从芯片材料结构、芯片腔面工艺方面进行了相关研究。在对激光器光束特性进行分析的基础上,提出减小激光器发散角的一些措施。

根据光纤中光线传播理论,设计了耦合所用光纤微透镜参数,通过光学软件对耦合光路进行仿真,得到单管耦合到芯径105μm,数值孔径NA=0.22光纤的理论耦合效率达93%以上(未镀增透膜)。根据仿真结果,对C-mount封装的976nm激光器和所设计的光纤进行耦合试验,得到90μm条宽激光器与光纤的耦合效率大于90%,100μm条宽激光器与光纤的耦合效率接近80%,证明所设计的光纤微透镜能够使激光器实现高的耦合效率,有较好的实用性。

为使耦合模块封装更可靠,尺寸更小,采用COS(Chip on Sub mount)的封装形式。封装过程中,采用Ansys仿

单管光纤耦合 - 图文

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

976nm单管高功率光纤耦合模块

摘 要

随着光纤激光器在工业领域的快速发展,对高功率,高亮度泵浦模块提出迫切要求。单管光纤耦合模块作为泵浦源在光纤激光器系统中具有独一无二的优势,因为它们具有高的功率转换效率和已经被证明的高可靠性,并且无需复杂水冷设备,使得整个系统的使用和维护成本大大降低。

本文首先确定了耦合所用激光器芯片及光束特性。为使芯片具有高功率密度、高可靠性,从芯片材料结构、芯片腔面工艺方面进行了相关研究。在对激光器光束特性进行分析的基础上,提出减小激光器发散角的一些措施。

根据光纤中光线传播理论,设计了耦合所用光纤微透镜参数,通过光学软件对耦合光路进行仿真,得到单管耦合到芯径105μm,数值孔径NA=0.22光纤的理论耦合效率达93%以上(未镀增透膜)。根据仿真结果,对C-mount封装的976nm激光器和所设计的光纤进行耦合试验,得到90μm条宽激光器与光纤的耦合效率大于90%,100μm条宽激光器与光纤的耦合效率接近80%,证明所设计的光纤微透镜能够使激光器实现高的耦合效率,有较好的实用性。

为使耦合模块封装更可靠,尺寸更小,采用COS(Chip on Sub mount)的封装形式。封装过程中,采用Ansys仿

LD光纤耦合模拟演示 - 图文

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

LD耦合模拟演示

版本:1.0 作者:徐白 时间:2015-5-9

目录

第一章 绪论 ........................................................................................................ 3 第二章 半导体激光与光纤耦合的理论 ................................................................... 4

2.1 半导体激光器输出光束特性...................................................................... 4 2.2 光纤的基本理论 ...................................................................................... 5 2.3 光纤耦合条件 ...............................................................................

基于MATLAB的2×2光纤定向耦合器设计

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

基于MATLAB的2×2光纤定向耦合器设计

1 设计原理

1.1 单模光纤的传导场

如图1,光纤的横截面有三层介质,分别是是芯层、包层和涂层,芯层折射率n1稍大于包层折射率n2,导波光由于全反射背包层约束在芯层中沿光纤延伸方向传播。假设光的传播方向为光纤中心轴方向。

图1 阶跃光纤横截面结构图

为简化讨论,只考虑基模的耦合。已知光纤中传导场表达式为

E(x,y,z,t)?a?z??e?x,y??ei?z?ei?t (1-1)

其中,a?z?为光纤中导波光场的场振幅,e?x,y?为光纤中导波光场的场分布,?为基模场的传播常数,?为角频率。

某时刻在光纤中的传导场的空间分布就与a?z?,e?x,y?和?为相关。

1.1.1 单模光纤的场分布

当给定波导(即光纤)的边界条件时,求解波导场方程可得本征解及相应的本征值?,即模式。模式是波导结构的固有电磁共振属性的表征。单模光纤中只能存在基模,其场分布是确定的,可由亥姆霍兹方程求得。在弱导光纤中的电磁波,其横向场分量Et、Ht远大于纵向场分量Ez、Hz ,而且横向场分量是线偏振的。于是我们把电场的横向分量取为y轴方向,即Et=Ey。

亥姆霍兹方程为

?Ey?k0n?r?Ey

zemax设计题目

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

光学系统设计题目

1、 根据提供的初始结构‘双视场.zmx’,设计一个双视场的红外系统(红外材料用自带的

INFRARED.AGF),要求焦距60mm/150mm,F数=1。成像质量:30线对时MTF?0.3(全视场),成像像面对角线半径7.6mm。波长8-12微米。

也可以用其它结构,可以添加一个非球面,但是添加非球面后需要减少镜片数量。

2、 自行查找文献,设计红外广角物镜(红外材料用自带的INFRARED.AGF),全视场角大于

90度。F数=1。成像质量:30线对时MTF?0.3(全视场),成像像面对角线半径7.6mm。波长8-12微米。

3、 以gauss.zmx为初始结构,设计一个成像镜头。要求:像面大小:6.4×4.8mm,像元8微

米。焦距:50mm,F数:1.0,波长:可见光,结构:双高斯,中心视场0.3(60lp/mm),全视场0.1(60lp/mm)。限用成都光明玻璃。要求进行样板比对(china.tpd)。

4、 以zebase中S_001为初始结构,或自行查找初始结构,设计10倍变焦可见光成像系统,

要求:像面大小:6.4×4.8mm,像元8微米。焦距:15-150mm,F数:1.0,波长:可见光,中心视场0.3(4

ZEMAX光学设计讲义

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

实验一:单镜头设计(Singlet)

实验目的:

1、学习如何启用Zemax

2、学习如何输入波长(wavelength)、镜头数据(lens data)

3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。

4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤:

1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length) 为100mm,波长为可见光,

用BK7玻璃为材料。

2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它

是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。

3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,

键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-

ZEMAX光学设计讲义

标签:文库时间:2024-07-01
【bwwdw.com - 博文网】

实验一:单镜头设计(Singlet)

实验目的:

1、学习如何启用Zemax

2、学习如何输入波长(wavelength)、镜头数据(lens data)

3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。

4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤:

1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length) 为100mm,波长为可见光,

用BK7玻璃为材料。

2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它

是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。

3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,

键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-