高考数学满分突破导数压轴专题

“高考数学满分突破导数压轴专题”相关的资料有哪些?“高考数学满分突破导数压轴专题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高考数学满分突破导数压轴专题”相关范文大全或资料大全,欢迎大家分享。

高考导数压轴题解答

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

整理:beijingdaxue gaojiejack ◇导数专题

目 录

一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)

(一)作差证明不等式

(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式

四、不等式恒成立求字母范围 (51)

(一)恒成立之最值的直接应用 (二)恒成立之分离常数

(三)恒成立之讨论字母范围

五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)

七、导数结合三角函数 (85)

书中常用结论(zhongdianzhangwo) ⑴sinx?x,x?(0,?),变形即为点连线斜率小于1. ⑵ex?x?1 ⑶x?ln(x?1) ⑷lnx?x?ex,x?0.

sinx?1,其几何意义为y?sinx,x?(0,?)上的的点与原x一、导数单调性、极值、最值的直接应用

1. (切线)设函数f(x)?x2?a.

(1)当a?1时,求函数g(x)?xf(x)在区间[0,1]上的最小值; (2)当a?0时,曲线y?f(x)在点P(x1,f(x1))(x1?a)处的切线为l,l与x轴交于点A(x2,0)求证:x1?x2?a.

1

解:(1)a?1时,g(x

高考导数压轴题解答

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

整理:beijingdaxue gaojiejack ◇导数专题

目 录

一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)

(一)作差证明不等式

(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式

四、不等式恒成立求字母范围 (51)

(一)恒成立之最值的直接应用 (二)恒成立之分离常数

(三)恒成立之讨论字母范围

五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)

七、导数结合三角函数 (85)

书中常用结论(zhongdianzhangwo) ⑴sinx?x,x?(0,?),变形即为点连线斜率小于1. ⑵ex?x?1 ⑶x?ln(x?1) ⑷lnx?x?ex,x?0.

sinx?1,其几何意义为y?sinx,x?(0,?)上的的点与原x一、导数单调性、极值、最值的直接应用

1. (切线)设函数f(x)?x2?a.

(1)当a?1时,求函数g(x)?xf(x)在区间[0,1]上的最小值; (2)当a?0时,曲线y?f(x)在点P(x1,f(x1))(x1?a)处的切线为l,l与x轴交于点A(x2,0)求证:x1?x2?a.

1

解:(1)a?1时,g(x

2014高考导数压轴题-导数应用题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

导数应用题

1. 某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中t为常数,且2≤t≤5),设该工厂每件玩具的出厂价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.

(1)求该工厂的日利润y(元)与每件玩具的出厂价x元的函数关系式;

(2)当每件玩具的日售价为多少元时,该工厂的利润y最大,并求y的最大值.

40解:(1)设日销售量为,则=10,∴k=10 e.则日销售量为,

.∴y=,其中35≤x≤41. ∴日利润y=(x-30-t)·

(2)y′=,令y′=0得x=31+t.

①当2≤t≤4时,33≤31+t≤35.∴当35≤x≤41时,y′≤0.

5∴当x=35时,y取最大值,最大值为10(5-t)e.

35<t+31≤36 ,t+31]上单调递增,②当4<t≤5时,函数y在[35,在[t+31,41]上单调递减.

9t∴当x=t+31时,y取最大值10e-.

∴当2≤t≤4时,x=35时,日利润最大值为10(5-t)e5元.

9t当4<t≤5时,x=31+t时,日利润最大值为10e-元.

2. 如图,ABCD是正方形空

中考数学 专题突破一 填空压轴题型作业手册

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

中考数学 专题突破一 填空压轴题型作业手册

填空压轴题型

规律探究性问题的解答需要学生经历观察、分析、归纳、概括、推理、检验等一系列探索活动,对学生的“数感”提出较高要求.

新定义题型就是指通过试题提供的新定义、新规则、新概念、新材料来创设新情景,提升类比迁移等综合素质.

因此,这两个考点成为北京市中考填空题压轴题的热点.

2012—2015年北京中考知识点对比 题型 2012 年份 填空 探究式的规律 2013 定义新运算,探究规律 2014 函数综合循环规律 2015 尺规作图的理论依据

1.[2015·北京] 阅读下面材料: 在数学课上,老师提出如下问题: 尺规作图:作一条线段的垂直平分线. 已知:线段AB.

图Z1-1

求作:线段AB的垂直平分线. 小芸的作法如下: 如图,

图Z1-2

1

(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点;

2

(2)作直线CD.

所以直线CD就是的所求作的垂直平分线. 老师说:“小芸的作法正确.”

请回答:小芸的作图依据是______________________.

2.[2014·北京] 在平面直角坐标系xOy中,对于点P(x,y),我们把点

高考数学专题;导数、积分及其应用

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

全国重点名校高中数学优质学案、专题汇编(附详解)

专题03 导数及其应用

易考点1 不能正确识别图象与平均变化率的关系

A,B两机关单位开展节能活动,活动开始后两机关的用电量W1?t?,W2?t?与时间t(天)的关系如图

所示,则一定有

A.两机关单位节能效果一样好 B.A机关单位比B机关单位节能效果好

C.A机关单位的用电量在[0,t0]上的平均变化率比B机关单位的用电量在[0,t0]上的平均变化率大 D.A机关单位与B机关单位自节能以来用电量总是一样大 【错解】选C.

因为在(0,t0)上,W1?t?的图象比W2?t?的图象陡峭,所以在(0,t0)上用电量的平均变化率,A机关单位比B机关单位大.

【错因分析】识图时,一定要结合题意弄清图形所反映的量之间的关系,特别是单调性,增长(减少)的快慢等要弄清.

1.平均变化率

函数y?f(x)从x1到x2的平均变化率为

f(x2)?f(x1),若?x?x2?x1,?y?f(x2)?f(x1),则平

x2?x1均变化率可表示为2.瞬时速度

?y. ?x全国重点名校高中数学优质学案、专题汇编(附详解)

一般地,如果物体的运动规律可以用函数s?s(t)来描述,那么,物体在时刻t

2017高考数学(理)二轮专题复习(检测)专题满分突破(Word版,含解析)

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

课时巩固过关练(一) 集合、常用逻辑用语 A组 一、选择题 1.(2016·安徽名校期中)已知集合A?12={x|x-3x+2<0},B={x?log4x>2},?则( ) A.A?B B.B?A C.A∩?RB=R D.A∩B=? 2解析:不等式x-3x+2<0可化为(x-1)(x-2)<0,解得12可化为log4x>log42,解得x>2,即B={x|x>2},则A∩B=?.故选D. 答案:D 2.(2016·山东泰安统考)已知集合P22={y=x+1},Q={y|y=x+1},R={x|y =x+1},M={(x,y)|y=x+1},N={x|x≥1},则( ) A.P=M B.Q=R C.R=M D.Q=N 解析:集合P只含有一个元素,即2函数y=x+1.集合Q,R,N中的元素全是数,即这三个集合都是数集,集合Q2={y|y=x+1}={y|y≥1},集合R={x|x∈R},集合N={x|x≥1}.集合M的元2素是函数y=x+1图象上所有的点.故选D. 答案:D 3.(2016·浙江杭州严州一模)已知集2合A={x|y=ln(1-2x)},B={x|x≤x},则?A∪B(A∩B)等于( ) ?1?A.(-∞,0) B.?-2,1? ???1??1?C.(-∞,0)∪?

2012届高考数学压轴题预测导数(共6套)

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

2012届高考数学压轴题预测

专题六 导 数

1. 设函数f(x)?ln(x?a)?x2,(1)若当x??1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;(2)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln解析:(1)f?(x)?e. 213?2x,依题意有f?(?1)?0,故a?. x?a22x2?3x?1(2x?1)(x?1)?从而f?(x)?. 33x?x?223?3?f(x)的定义域为??,?∞?,当??x??1时,f?(x)?0;

2?2?当?1?x??11时,f?(x)?0;当x??时,f?(x)?0. 22从而,f(x)分别在区间??,?1?,?∞?单调增加,在区间??1,???,?3?2??1??2????1??单调减少. 2?2x2?2ax?1?∞),f?(x)?(2)f(x)的定义域为(?a,.

x?a方程2x?2ax?1?0的判别式??4a?8. ①若??0,即?2?a?222,在f(x)的定义域内f?(x)?0,故f(x)的极值.

(2x?1)2②若??0,则a?2或a??2.若a?2,x?(?2. ,∞?),f?(x)?x?2??2??22?????,?∞?当x??时,f(x)?0,当x

高考数学难点突破_难点35__导数的应用问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

高考数学难点突破_难点35__导数的应用问题

难点35 导数的应用问题

利用导数求函数的极大(小)值,求函数在连续区间[a,b]上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用.

●难点磁场

(★★★★★)已知f(x)=x2+c,且f[f(x)]=f(x2+1)

(1)设g(x)=f[f(x)],求g(x)的解析式;

(2)设φ(x)=g(x)-λf(x),试问:是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,且在 (-1,0)内是增函数.

●案例探究

[例1]已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.

(1)试求常数a、b、c的值;

(2)试判断x=±1是函数的极小值还是极大值,并说明理由.

命题意图:利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的继续深入.是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与其导数关系的理解.属★★★★★级题目.

知识依托:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构

2014年高考导数压轴题汇编

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

20.(本小题满分13分) 解:

3a?x?a?1-,当x??2a,或x?a时,是单调递增的。??x?2ax?2aa?0,f(x)??

?x?a3a??-1?,当?2a?x?a时,是单调递减的。?x?2a?x?2a(Ⅰ)由上知,当a?4时,f(x)在x?[0,4]上单调递减,其最大值为f(0)?-1?3a?1

2a2 当a?4时,f(x)在[0,a]上单调递减,在[a,4]上单调递增。令f(4)?1-3a1?f(0)?,解得:a?(1,4],即当a?(1,4]时,g(a)的最大值为f(0); 4?2a2当a?(0,1]时,g(a)的最大值为f(4)

3a?1-,当a?(0,1]时??4?2a 综上,g(a)???1,当a?(1,??)时??2(II)由前知,y=f(x)的图像是由两段反比例函数的图像组成的.因此,若在图像上存在两点P(x1,y1),Q(x2,y2)满足题目要求,则P,Q分别在两个图像上,且f'(x1)?f'(x2)??1.

?3a?(x?2a)2,当x??2a,或x?a时? ??3af'(x)??,当?2a?x?a时2(x?2a)??0?a?4??不妨设

3a?3a???1,x1?(0,a),x2?(a,8]?3a?(x1?2a

五大法宝拿下GMAT数学满分

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

五大法宝拿下GMAT数学满分

GMAT数学满分难么?其实一点都不困难,考生只要能够认真进行GMAT数学备考,并掌握一定的解题技巧,那么GMAT数学考试高分往往显得触手可及。

一、数形结合。

要想拿到GMAT数学满分,第一个思想就是数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.

二、换元。

换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结 果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从 而达到化繁为简、变未知为已知的目的.

三、转化与化归。

所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.

转化与化归的思想方法是数学中最基本的