断点回归设计的基本思想
“断点回归设计的基本思想”相关的资料有哪些?“断点回归设计的基本思想”相关的范文有哪些?怎么写?下面是小编为您精心整理的“断点回归设计的基本思想”相关范文大全或资料大全,欢迎大家分享。
断点回归设计(RDD)
让“跳跃”更有意义:断点回归设计(RDD)
原创2016-09-24张立龙定量群学
在一个高度依赖规则的世界里,有些规则的出现十分随意,这种随意性为我们提供了性质良好的实验(Angrist& Pischke,2009)。断点回归设计(RegressionDiscontinuity Design)是一种仅次于随机实验的能够有效利用现实约束条件分析变量之间因果关系的实证方法。Lee(2008)认为在随机实验不可得的情况下,断点回归能够避免参数估计的内生性问题,从而真实反映出变量之间的因果关系。
断点回归方法首先是由美国西北大学心理学家Campbell于1958年提出的;并与1960年,与 Thistlethwaite正式发表了第一篇关于断点回归的论文,提出断点回归是在非实验的情况下处理处置效应(Treatment Effects)的一种有效的方法,主要应用于心理学和教育学领域。1963年,Campbell and Stanley为断点回归提供了更加清晰化的概念,但由于当时还缺乏严密的统计证明,加之IV 方法在处理内生性的思路和范式上具有更广阔的适用范围,因此在随后的几十年间,RD 方法一直没有得到经济学者的重视。直到上世纪90 年代末,随着该方
回归分析的基本思想及其初步应用
回归分析的基本思想及其初步应用
教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.
教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程:
一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?
2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据?作散点图?求回归直线方程?利用方程进行预报. 二、讲授新课: 1. 教学例题:
① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 2 3 4 5 6 7 8 编 号 1 165 157 170 175 165 155 170 身高/cm 165 57 50 54 64 61 43 59 体重/kg 48 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路?教师演示?学
1.1《回归分析的基本思想及其初步应用》
1.1 回归分析的基本思想及其初步应用
基础梳理
1.相关关系是一种非确定性关系,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,函数关系是一种确定性关系.
2.在线性回归模型y=bx+a+e中,最小二乘法估计^a和^b就是未知参数a和b的最好估计,其计算公式如下:
^b=
,^a=
1n1n--,其中,x=?xi,y=?yi.
ni=1ni=1
另外,称为样本点的中心,回归直线一定过样本点中心.
3.衡量模型拟合效果.
(1)残差:对于样本点(x1,y1),(x2,y2),?,(xn,yn)而言,它们的随机误差为ei=yi-bxi-a,i=1,2,3,?,n,其估计值为^ei=yi-^yi=yi-^bxi-^a,i=1,2,?,n,^ei称为相应于点(xi,yi)的残差.
(2)残差图:我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号、身高数据或体重估计值等,这样作出的图形称为残差图.
残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适.这样的带状区域的宽度越窄,说明模型拟合精度越高.
(3)残差分析:可以通过残差发现原始数据中的可疑数据,判断
所建立模型的拟合效果.
(4)相关指数:计算公式是R2=
回归分析的基本思想及其初步应用(H)
回归分析的基本思想及其初步应用(H)
1.1 回归分析的基本思想 及其初步应用
回归分析的基本思想及其初步应用(H)
温故知新不相关 两个变量的关系 函数关系 相关关系 非线性相关 函数关系中的两个变量间是一种确定性关系。 函数关系中的两个变量间是一种确定性关系。 相关关系是一种非确定性关系。 相关关系是一种非确定性关系。 线性相关
回归分析的基本思想及其初步应用(H)
例1、某大学中随机选取8名女大学生,其身高 某大学中随机选取8名女大学生, 和体重数据如下表所示. 和体重数据如下表所示.编号 体重/kg 体重/kg 1 48 2 57 3 50 4 54 5 64 6 61 7 43 8 59 身高/cm 身高/cm 165 165 157 170 175 165 155 170
求根据女大学生的身高预报体重的回归方程, 求根据女大学生的身高预报体重的回归方程, 并预报一名身高为172cm的女大学生的体重 的女大学生的体重. 并预报一名身高为 的女大学生的体重
回归分析的基本思想及其初步应用(H)
解:1、选取身高为自变量 ,体重为因变量 ,作散点图: 、选取身高为自变量x,体重为因变量y,作散点图:
2、由散点图知道身高和体重有比较好的线性相关关系, 、
1.1《回归分析的基本思想及其初步应用》
1.1 回归分析的基本思想及其初步应用
基础梳理
1.相关关系是一种非确定性关系,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,函数关系是一种确定性关系.
2.在线性回归模型y=bx+a+e中,最小二乘法估计^a和^b就是未知参数a和b的最好估计,其计算公式如下:
^b=
,^a=
1n1n--,其中,x=?xi,y=?yi.
ni=1ni=1
另外,称为样本点的中心,回归直线一定过样本点中心.
3.衡量模型拟合效果.
(1)残差:对于样本点(x1,y1),(x2,y2),?,(xn,yn)而言,它们的随机误差为ei=yi-bxi-a,i=1,2,3,?,n,其估计值为^ei=yi-^yi=yi-^bxi-^a,i=1,2,?,n,^ei称为相应于点(xi,yi)的残差.
(2)残差图:我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号、身高数据或体重估计值等,这样作出的图形称为残差图.
残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适.这样的带状区域的宽度越窄,说明模型拟合精度越高.
(3)残差分析:可以通过残差发现原始数据中的可疑数据,判断
所建立模型的拟合效果.
(4)相关指数:计算公式是R2=
29 回归分析的基本思想及其初步应用3
回归分析的基本思想及其初步应用(第3课时)
一、 教学目标
(1) 知识与技能: 通过典型案例的探究,进一步了解回归的基本思想方法及初步应用;了解两个变量非线性相关关系.
(2) 过程与方法: 让学生体会统计方法的特点;让学生体会可以借助于线性回归模型研究呈非线性关系的两个变量之间的关系.
(3) 情感态度与价值观: 培养学生学好数学、用好数学的信心,加强与现实生活的联系,以科学的态度评价两个变量的相互关系;培养学生运用所学知识,解决实际问题的意识.
二、 教学重点和难点
教学重点: 通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型. 教学难点: 有些非线性模型如何通过变换转化为线性回归模型 .
三、 教学过程
(一) 导入新课
问题1 你能回忆建立线性回归模型的基本步骤吗? 选变量→画散点图→选模型→估计参数→分析与预测. 教科书上所列“建立回归模型的基本步骤”,不仅适用于线性回归模型,也适用于一般回归模型的建立.
(二) 讲解新课 1. 讲解例4
幻灯片出示例4,引导学生理解例题含义.
例4 一只红铃虫的产卵数y和温度x有关.现收集了7组观测数据列于表4中.
表4一只红铃虫的产卵数y与温度x的数据
温度x/℃2
1.1.2回归分析的基本思想及其初步应用
精品
1. 1.2 回归分析的基本思想及其初步应用
课前预习学案
一、预习目标:回归分析的基本思想、方法及初步应用. 二、预习内容:
1.两个变量有线性相关关系且正相关,则回归直线方程中,A.
B.
C.
D.
的系数 ( )
2.两个变量有线性相关关系且残差的平方和等于0,则( )
A.样本点都在回归直线上 B.样本点都集中在回归直线附近 C.样本点比较分散 D.不存在规律
课内探究学案
一、学习要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
学习重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 学习难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、学习过程
1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.
2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
3.教学总偏差平方和、残差平方和、回归平方和: (1)总偏差平方和:所有单个样本值与样本均值差的平方和,即SST?
第2章_线性回归的基本思想:双变量模型
第2章 线性回归的基本思想:线性回归的基本思想:双变量模型 双变量模型
本章主要讲授如下内容:
2.1 预备知识
2.2 变量之间的关系及相关分析 2.3 回归分析的性质
2.4 总体回归函数(population regression function, PRF) 2.5 样本回归函数(sample regression function, SRF) 2.6 几个概念
2.7 参数估计:普通最小二乘法
2.1 预备知识2.1 预备知识 预备知识
1.期望算子的性质
(1)E(aX+b)=aE(X)+b 其中,X是随机变量,a和b是常数 (2)Var(aX+b)=a2Var(X)
(3)E(X+Y)=E(X)+E(Y) 其中,X和Y是随机变量 (4)Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)
(5)如果X和Y是独立的,则 E(XY)=E(X)E(Y) (6)如果X和Y是独立的,则 Cov(X,Y)=0 (7)Var()=
2σX
2
,这里,σX=Var(Xi)表明随着样本的增大,均值估计的方差会降低。
n
1n2
(8)E[ (Xi )2]=σX∑n 1i=1
2.求和算子的运用
(1)∑kXi=k∑Xi,这里k为常数 (2)∑(
1.1.2回归分析的基本思想及其初步应用
精品
1. 1.2 回归分析的基本思想及其初步应用
课前预习学案
一、预习目标:回归分析的基本思想、方法及初步应用. 二、预习内容:
1.两个变量有线性相关关系且正相关,则回归直线方程中,A.
B.
C.
D.
的系数 ( )
2.两个变量有线性相关关系且残差的平方和等于0,则( )
A.样本点都在回归直线上 B.样本点都集中在回归直线附近 C.样本点比较分散 D.不存在规律
课内探究学案
一、学习要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.
学习重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 学习难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、学习过程
1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.
2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.
3.教学总偏差平方和、残差平方和、回归平方和: (1)总偏差平方和:所有单个样本值与样本均值差的平方和,即SST?
2020高中数学 课时分层作业17 回归分析的基本思想及其初步
新人教部编版初高中精选试题
课时分层作业(十七) 回归分析的基本思想及其初步应用
(建议用时:40分钟)
[基础达标练]
一、选择题
1.设有一个回归方程为y=2-2.5x,则变量x增加一个单位时,( ) A.y平均增加2.5个单位 C.y平均减少2.5个单位
B.y平均增加2个单位 D.y平均减少2个单位
^C [由回归方程知x增加一个单位,y平均减少2.5个单位.]
2.对变量x,y进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是( )
A [用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.]
3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如表所示:
父亲身高x(cm) 儿子身高y(cm) 174 175 176 175 176 176 176 177 178 177 则y对x的线性回归方程为( ) 【导学号:95032238】
A.y=x-1 1^C.y=88+x
2
^B.y=x+1 D.y=176
^^C [设y对x的线性回归方程为y=bx+a,
^^^xx=176,y=17