幂函数和指数函数的概念

“幂函数和指数函数的概念”相关的资料有哪些?“幂函数和指数函数的概念”相关的范文有哪些?怎么写?下面是小编为您精心整理的“幂函数和指数函数的概念”相关范文大全或资料大全,欢迎大家分享。

幂函数与指数函数的区别

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

一.指数函数

1.y=a^x:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1。 (2)指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 函数总是通过(0,1)这点。

(6) 指数函数既不是奇函数也不是偶函数。

二.对数与对数函数

(一)对数: 1.零和负数没有对数 2.三个对数恒等式

3.三个运算法则:(在a>0,a≠1的前提下)

1

(1) (2) (3)

4.两个换底公式

同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下: (1) (2)

练习:1.解出下列的x 2.求下列函数的定义域:

(2)log3(x-1)=log9(x+5).

3.已知lg2=0.3010,lg3=0.4771,求4.求值:(1)

(二)对数函数的性质及应用

。 (2)

2

练习:

1. 若logm3.5>logn3.5(m,n>0,且m≠1,n≠1),试比较m ,n的大小。

(-x2+2x+3)的值域和单调区间。

2. 求函数y=

3.已知函数f(x)=lg(ax2+2x+1)。

(1)若函数f(x)的定义域为

指数函数、对数函数、幂函数综合(基础)

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

让更多的孩子得到更好的教育

指数函数、对数函数、幂函数综合 A

一、目标与策略

明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!

学习目标:

1.理解有理指数幂的含义,掌握幂的运算.

2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点。 3.理解对数的概念及其运算性质。

4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.

5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数y?ax与对数函数y?logax互为反函数(a>0,a≠1).

学习策略:

?

深刻理解指数函数、对数函数、幂函数的图象与性质,对数与形的基本关系能相互转化.在这一章中,数形结合的思想比比皆是,深刻理解和灵活运用这一思想方法,不仅会给解题带来方便,而且这正是充分把握住了中学数学的精髓和灵魂的体现.

二、学习与应用

“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上

指数函数的概念和性质教案

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

一、教材的地位和作用

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

二、教学目标

知识目标:①掌握指数函数的概念;

②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。

能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力;

②体会数形结合思想、分类讨论思想,增强学生识图用图的能力;

情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实

际背景;

②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。

三、教学重难点

教学重点:进一步研究指数函数的图象和性质。

指数函数的

指数函数的概念和性质教案

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

一、教材的地位和作用

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。

二、教学目标

知识目标:①掌握指数函数的概念;

②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。

能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力;

②体会数形结合思想、分类讨论思想,增强学生识图用图的能力;

情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实

际背景;

②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。

三、教学重难点

教学重点:进一步研究指数函数的图象和性质。

指数函数的

二次函数、指数函数、对数函数、幂函数

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

http://www.1beike.com 第一备课网 教案 试题 课件 大全

考点4 二次函数 、指数函数、对数函数、幂函数

1.(2010·安徽高考理科·T6)设abc?0,二次函数f?x??ax2?bx?c的图象可能是( )

A、 B、

C、 D、

【命题立意】本题主要考查二次函数图像与其系数的关系,考查考生的逻辑推理能力. 【思路点拨】逐项验证,由图象先确定a、c的符号,再根据对称轴的正负确定b的符号。 【规范解答】选 D.由D选项的二次函数图象可知,a?0,c?0,且对称轴?b?0,所以b?0,满足2aabc?0,故D正确;同理可判断A、B、C错误。

【方法技巧】根据二次函数图像开口向上或向下,分a?0或a?0两种情况分类考虑,另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标等对系数的影响。 2.(2010·浙江高考文科·T2)已知函数 f(x)?log2(x?1),若f(?)?1, ?=( ) (A)0

(B)1

(C)2

(D)3

【命题立意】本题主要考察对数函数概念及对数运算性质。 【思路点拨】把f(?)表示出来,解对数方程即可。

【规范解答】选B。f(?)?log2(??1)?1

指数函数、对数函数、幂函数的图像与性质

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

1 指数函数、对数函数、幂函数的图像与性质

(一)指数与指数函数

1.根式

(1)根式的概念

(2).两个重要公式

①??

??????<-≥==)0()0(||a a a a a a a n n ;

②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂

(1)幂的有关概念

①正数的正分数指数幂:0,,1)m

n a a m n N n *=>∈>、且;

②正数的负分数指数幂: 1

0,,1)m

n m

n a a m n N n a -*==>∈>、且

③0的正分数指数幂等于0,0的负分数指数幂没有意义.

注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质

①a r a s =a r+s (a>0,r 、s ∈Q );

②(a r )s =a rs (a>0,r 、s ∈Q );

③(ab)r =a r b s (a>0,b>0,r ∈Q );.

3.指数函数的图象与性质

n 为奇数 n 为偶数

2

注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之

二次函数、指数函数、对数函数、幂函数

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

http://www.1beike.com 第一备课网 教案 试题 课件 大全

考点4 二次函数 、指数函数、对数函数、幂函数

1.(2010·安徽高考理科·T6)设abc?0,二次函数f?x??ax2?bx?c的图象可能是( )

A、 B、

C、 D、

【命题立意】本题主要考查二次函数图像与其系数的关系,考查考生的逻辑推理能力. 【思路点拨】逐项验证,由图象先确定a、c的符号,再根据对称轴的正负确定b的符号。 【规范解答】选 D.由D选项的二次函数图象可知,a?0,c?0,且对称轴?b?0,所以b?0,满足2aabc?0,故D正确;同理可判断A、B、C错误。

【方法技巧】根据二次函数图像开口向上或向下,分a?0或a?0两种情况分类考虑,另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标等对系数的影响。 2.(2010·浙江高考文科·T2)已知函数 f(x)?log2(x?1),若f(?)?1, ?=( ) (A)0

(B)1

(C)2

(D)3

【命题立意】本题主要考察对数函数概念及对数运算性质。 【思路点拨】把f(?)表示出来,解对数方程即可。

【规范解答】选B。f(?)?log2(??1)?1

会考复习三、指数函数、对数函数、幂函数

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

会考复习三、指数函数、对数函数、幂函数

1、平方根、立方根、n次方根的概念

2、方根的性质

3、根式

4、正数的分数指数幂

5、零的分数指数幂

6、有理数指数幂的运算性质

三、例题分析

例1、求下列各式的值

(1)(5)2 = (2)( 2)3 = (3)

(3 )2= 例2、化简

(1)x2 2xy y2

(2)

yx

x y

1

2

3例3、求值:(1)1002

(2)83

(3) 1

4

例4、用分数指数幂的形式表示下列各式 a 0

(1)a2 a (2)a3 a2 (3)aa (m n)2

( 2)4= (4)

(3)(a 2)2

3(4) 16 4

81

(5)9

32

4)p6q3

p 0 (5)

例5、若a a 1 3(a 1),求a a

12

12

及a a

32

32

四、随堂练习

1、用根式的形式表示下列各式(a 0)

(1)a (2)a (3)a (4)a2、用分数指数幂的形式表示下列各式:

(1)x (2)xy (3)3、求下列各式的值

(1)25 (2)

4、化简下列各式 (1)aaa

(3)(xy) (xy)(x 0,y 0) (4)(a

指数运算和指数函数

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

第五讲 指数运算和指数函数

一、知识点

1.根式的性质

nan?

2.幂的有关概念

(1)正整数指数幂:an?a??a??a.............a(n?N?) ?????n?p(2)零指数幂a?1(a?0) (3)负整数指数幂 a?01(a?0.p?N?) pa(4)正分数指数幂 amn?nam(a?0,m,n?N?,且n?1)

mn(5)负分数指数幂 a??1amn(a?0,m,n?N?,且n?1)

(6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)a?a?arrrsr?s,(a?0,r,s?Q) (2)(ar)s?ars,(a?0,r,s?Q)

s (3)(ab)?a?a,(a?0,b?0,r?Q)

4.指数函数定义:函数y?a(a?0且a?1)叫做指数函数。 5. 指数函数的图象和性质

xy?ax 0 < a < 1 a > 1 图 象 定义域 性 质 值域 定点 单调性 对称性 y?ax和y?a?x关于 对称

1.函数y?(x?5)0?(x?2)

?12

( )

A.{x|x?5,x?2}

《指数函数》

标签:文库时间:2025-01-26
【bwwdw.com - 博文网】

4.2.1 指数函数及其图像与性质

【教学目标】 1.知识与技能目标:

使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。 2.过程与方法目标:

在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思 维活动,培养学生的思维能力,体会学习数学规律的方法。 3.情感态度与价值观:

让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。

【教学重、难点】

教学重点:理解指数函数的定义、图象及性质。 教学难点:指数函数性质的归纳与运用。

【教学方法】

我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。

【教学过程】 1.流程 (1)教学流程:

创设情境 激发兴趣引出新知 形成概念深入探究 引导发现巩固提高 灵活运用归纳总结 新知梳理分层作业共同提高