小学奥数中的数论问题

“小学奥数中的数论问题”相关的资料有哪些?“小学奥数中的数论问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数中的数论问题”相关范文大全或资料大全,欢迎大家分享。

小学奥数 - 数论专题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

名校真题 测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题)

如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题)

120250513131313?++=________。

212121212121212121214 (04年人大附中考题)

甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。

(02年人大附中考题)

下列数不是八进制数的是( ) A、125 B、126 C、127 D、128

【附答案】

1 【解】:6

2 【解】:设原来数为ab,这样后来的数为a

小学奥数 - 数论专题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

名校真题 测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题)

如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题)

120250513131313?++=________。

212121212121212121214 (04年人大附中考题)

甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。

(02年人大附中考题)

下列数不是八进制数的是( ) A、125 B、126 C、127 D、128

【附答案】

1 【解】:6

2 【解】:设原来数为ab,这样后来的数为a

数学奥赛中数论问题的解题方法

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

奥数竞赛!

数学奥赛中数论问题的解题方法

1引言

在历年的国内外数学奥林匹克中。几乎每年都离不开数论问题。分析历年奥林匹克数学竞赛试题易知,奥林匹克数学中的数论问题主要有:(1)整除性问题;(2)数性的判断;(3)余数问题;问题;(6)与高斯函数【x1有关的问题。本文对奥林匹克数学中的数论问题的常用解题方法做进一步的分析总结。

2常用的部分解题方法2.1奇偶分析法奇偶数的性质:

(1)两个奇数的和与差为偶数,而积为奇数:

(2)两个偶数的和、差、积为偶数;奇数与偶数的和、差为奇数,而积为偶数;

(3)如果m为整数。a为奇数。则m+口的奇偶性与m相反;如果m为整数,b为偶数,则m±6的奇偶性与相同。

例设N是正整数,如果存在大于l的正整数k,使得N~k(k.-1)

的正整数倍,则称N为一个”千禧数”。试确定l,2,3,…,2000中。千禧数”的个数,并说明理由。

解设Ⅳ是“千禧数”,则存在正

整数m,使得N一丛生尘:砌,即

2Ⅳ=k(2m+七一1):

显然七与

2m+七一1的奇偶性不同,且后>l,2m+k—l>l,所以2N有大于l的奇因子,从而Ⅳ有大于l的奇因子。

反过来,若Ⅳ有大于l的奇因子,则可设2N=AB,其中A,B的奇偶性不同,且A<B,则一>l且

小学五年级奥数—数论之同余问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

数论之同余问题

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”

余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:

一、带余除法的定义及性质:

一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: (1)当r?0时:我们称a可以被b整除,q称为a除以b的商或完全商 (2)当r?0时:我们称a不可以被b整除,q称为a除以b的商或不完全商 一个完美的带余除法讲解模型:

如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:

1.余数的加法定理

a与b的和除以c的余数

小学奥数可以分为计算、计数、数论、几何、

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

小学奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,其中必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。 以下是小学奥数知识清单:

2、年龄问题的三个基本特征: ①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的;

3、归一问题

基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;

5、鸡兔同笼问题

基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。 基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。

6、盈亏问题

基本概念:一定量

小学奥数专题之-数论专题典型结论汇总

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

数论专题典型结论汇总

整除

一、常见数字的整除判定方法

1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除;

3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.

4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.

5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 【备注】(以上规律仅在十进制数中成立.) 二、整除性质

性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,

c︱b,那么c︱(a±b).

性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,

c∣b,那么c∣a.

用同样的

小学奥数周期问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

周期问题

典型例解

[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?

●●○●●○●●○?

【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。 再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。 解答 90÷3=30,正好有30个周期。

101÷3=33??2,有33个周期还多2个。 所以,第90颗棋是白棋,第101颗棋是黑棋。 答:第90颗是白棋,第101颗是黑棋

[举一反三1]

①有一列数:5、6、2、4、5、6、2、4?第129个数是多少?

②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠? ③△△○△△○△△○?其中第99个是什么图形? [例2] 7??7???7??7?????7积的个位数字是几? ???202?7[分析]要求202个7连乘的积的个位数字,因此,我们只需要考虑积的个位数字的排列规律。

小学奥数周期问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

周期问题

典型例解

[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?

●●○●●○●●○?

【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。 再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。 解答 90÷3=30,正好有30个周期。

101÷3=33??2,有33个周期还多2个。 所以,第90颗棋是白棋,第101颗棋是黑棋。 答:第90颗是白棋,第101颗是黑棋

[举一反三1]

①有一列数:5、6、2、4、5、6、2、4?第129个数是多少?

②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠? ③△△○△△○△△○?其中第99个是什么图形? [例2] 7??7???7??7?????7积的个位数字是几? ???202?7[分析]要求202个7连乘的积的个位数字,因此,我们只需要考虑积的个位数字的排列规律。

小学奥数时钟问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

小学奥数时钟问题

钟表是我们生活中重要的计时工具.钟面上的分针,时针都在连续不断的按规律转动着.时钟问题是研究钟面上时针和分针关系的问题.是特殊的、在圆周上的行程问题;如求分针与时针重合、成角等有趣的问题.研究此类问题对提高思维能力很有益处。为解好这类问题应掌握以下基础知识.即常用关系式.

1.钟面的一周分为60格,每格为6°.每个数字间隔为5个格为30°.分针每分钟走一格,为6°.时针每分钟走格.为0.5°.分针速度是时针速度的12倍,时针是分针速度的.

2.时针和分针在重合状态时,分针每再走60÷(1-次. )=65(分),再与时针重合一

3. 若在初始时刻两针相差的格数为a,分针在后,则后者赶上前者的时间为: a÷(1-)(分)

4. 两针垂直,表示它们所成最小角是90°.

5. 两针在一直线上,它们成的角是180或0

现举几例阐述解题方法与思路.

例1、现在是4时,什么时候,时针和分针第一次相遇?

解:由20÷(1-)=21(分),在4点21分.

例2、在10时与11时之间,钟面上时针和分针在什么时刻垂直?

解:第一次垂直需走 5÷(1-)=5(分),在10点5

小学奥数同余问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

小学奥数同余问题

同余问题(一)

在平时解题中,我们经常会遇到把着眼点放在余数上的问题。如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24

小时,

,也就是说52小时里包含两个整天再加上4小时,这样就在7

时30分的基础上加上4小时,就是11时30分。很明显这个问题的着眼点是放在余数上了。

1. 同余的表达式和特殊符号

37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。

记作:(mod7) “”读作同余。

一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:

2. 同余的性质

(1)(每个整数都与自身同余,称为同余的反身性。)

(2)若,那么(这称作同余的对称性)

(3)若性)

(4)若,,则(这称为同余的传递,,则()(这称为同余的可加性、可减性)

(称为同余的可乘性)

(5)若有趣的现象:

如果 ,则,n为正整数,同余还有一个非常

小学奥数同余问题

那么(的差一定能被k整除)

这是为什么呢?

k也就是的公约数,所以有

下面我们应用同余的这些性质解题。

【例题分析】

例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?

分析与解答:

假设这个自然数是a,