真实气体的 热力学性质计算的方法是什么?
“真实气体的 热力学性质计算的方法是什么?”相关的资料有哪些?“真实气体的 热力学性质计算的方法是什么?”相关的范文有哪些?怎么写?下面是小编为您精心整理的“真实气体的 热力学性质计算的方法是什么?”相关范文大全或资料大全,欢迎大家分享。
气体热力学性质
第二章 气体热力学性质
第一节 理想气体的性质
一、理想气体:
1、假设:①气体分子是弹性的、不占据体积的特点;
②气体分子间没有相互作用力。
对于气体分子的体积相对气体比容很小,分子间作用力相对于气体压力也很小时,可
作为理想气体处理。 2、状态方程
理想气体在任一平衡状态时的压力P、温度T、比容v之间的关系应满足状态方程,
即克拉佩龙方程 Pv= RT
mkg质量气体为: Pv=mRT=mR0T
R 气体常数,反映气体特征的物理量,和气体所处状态无关; n 物质的量(千克数或摩尔数); R0 通用气体常数,与气体状态、其他性质无关的普适恒量; R0??R?831415J/Kmol?K
CV,CP分别表示定压比容及定容比容,对于理想气体,他们仅是温度的单值函
数,CV?CP 其 CV?CP?R 比值CV/CP?k(绝热指数) 标准状态时(压力未101.325Kpa, 0℃) 单原子气体 k=1.66?1.67 双原子气体 k=1.40?1.41
气体热力学性质
第二章 气体热力学性质
第一节 理想气体的性质
一、理想气体:
1、假设:①气体分子是弹性的、不占据体积的特点;
②气体分子间没有相互作用力。
对于气体分子的体积相对气体比容很小,分子间作用力相对于气体压力也很小时,可
作为理想气体处理。 2、状态方程
理想气体在任一平衡状态时的压力P、温度T、比容v之间的关系应满足状态方程,
即克拉佩龙方程 Pv= RT
mkg质量气体为: Pv=mRT=mR0T
R 气体常数,反映气体特征的物理量,和气体所处状态无关; n 物质的量(千克数或摩尔数); R0 通用气体常数,与气体状态、其他性质无关的普适恒量; R0??R?831415J/Kmol?K
CV,CP分别表示定压比容及定容比容,对于理想气体,他们仅是温度的单值函
数,CV?CP 其 CV?CP?R 比值CV/CP?k(绝热指数) 标准状态时(压力未101.325Kpa, 0℃) 单原子气体 k=1.66?1.67 双原子气体 k=1.40?1.41
范德瓦耳斯气体的热力学性质3
讨论范德瓦尔斯气体的内能、熵、焓和自由能,给出相应的数学表达式,并对相应问题进行讨论。
范德瓦耳斯气体的热力学性质
陈东 2008061144
(黔南民族师范学院物理与电子科学系,贵州都匀 558000)
【摘 要】 讨论范德瓦尔斯气体的内能、熵、焓和自由能,给出相应的数学表达式,并对相应问题进行讨论。 【关键词】 范德瓦尔斯气体;内能;熵;焓;自由能;绝热过程;节流过程
Van der Waals gas thermodynamic properties
Chen Dong 200806114
( Qiannan Normal College for Nationalities Department of physics and electronic science, Guizhou Tuyun 558000)
[ Abstract ] to discuss Van Der Waals gas internal energy, entropy, enthalpy and free energy, the corresponding mathematical expressions, and the relative problems are discu
范德瓦耳斯气体的热力学性质3
讨论范德瓦尔斯气体的内能、熵、焓和自由能,给出相应的数学表达式,并对相应问题进行讨论。
范德瓦耳斯气体的热力学性质
陈东 2008061144
(黔南民族师范学院物理与电子科学系,贵州都匀 558000)
【摘 要】 讨论范德瓦尔斯气体的内能、熵、焓和自由能,给出相应的数学表达式,并对相应问题进行讨论。 【关键词】 范德瓦尔斯气体;内能;熵;焓;自由能;绝热过程;节流过程
Van der Waals gas thermodynamic properties
Chen Dong 200806114
( Qiannan Normal College for Nationalities Department of physics and electronic science, Guizhou Tuyun 558000)
[ Abstract ] to discuss Van Der Waals gas internal energy, entropy, enthalpy and free energy, the corresponding mathematical expressions, and the relative problems are discu
均匀物质的热力学性质
第二章 均匀物质的热力学性质
2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.
解:根据题设,气体的压强可表为
p?f?V?T, (1)
式中f(V)是体积V的函数. 由自由能的全微分
dF??SdT?pdV
得麦氏关系
将式(1)代入,有
由于p?0,,故有??p??S???p???f(V)?. (3) ????T??V?T??T?V?S???0?V??T??S???p??????. (2) ??V?T??T?VT?0. 这意味着,在温度保持不变时,该气体的熵
随体积而增加.
2.2 设一物质的物态方程具有以下形式:
p?f(V)T,
试证明其内能与体积无关.
解:根据题设,物质的物态方程具有以下形式:
故有
但根据式(2.2.7),有
??U???p??T?????p, ??V?T??T?V??p????f(V). (2) ?T??Vp?f(V)T,
均匀物质的热力学性质
第二章 均匀物质的热力学性质
2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.
解:根据题设,气体的压强可表为
p?f?V?T, (1)
式中f(V)是体积V的函数. 由自由能的全微分
dF??SdT?pdV
得麦氏关系
将式(1)代入,有
由于p?0,,故有??p??S???p???f(V)?. (3) ????T??V?T??T?V?S???0?V??T??S???p??????. (2) ??V?T??T?VT?0. 这意味着,在温度保持不变时,该气体的熵
随体积而增加.
2.2 设一物质的物态方程具有以下形式:
p?f(V)T,
试证明其内能与体积无关.
解:根据题设,物质的物态方程具有以下形式:
故有
但根据式(2.2.7),有
??U???p??T?????p, ??V?T??T?V??p????f(V). (2) ?T??Vp?f(V)T,
气体的热力性质
气体的热力性质
本章提要及安排
本章提要:
本章主要讲述理想气体性质。理想气体性质是指可以忽略分子自身占有的体积和分子间的相互作用力对气体宏观热力性质的影响。在通常的工作参数范围内,按理想气体性质来计算气体工质的热力性质具有足够的精确度,其误差在工程上往往是允许的。理想气体性质是研究工质热力性质的基础。理想气体性质反映了气态工质的基本特性,更精确的气体、蒸气的热力性质表达式,往往可以在理想气体性质的基础上引入各种修正得出,本章对此亦作了简单的介绍。
本章要求:
1.理解理想气体的概念,掌握理想气体状态方程式的应用。 2.掌握理想气体比热容及热力学能、焓和熵等状态参数的计算。 3.了解实际气体的状态方程式。
4.初步掌握依据实际气体状态方程式导得气体各种状态参数的方法。 学习建议:
本章学习时间建议共4学时:
1.理想气体性质 1学时 2.理想气体比热容及参数计算 1学时 3.实际气体状态方程 1学时 4 .实际气体比热容及焓、熵函数 1学时
5.1 理想气体性质
本节知识点: 理想气体状态方程 理想气体热系数 理
工程热力学第六版素材第二章 气体的热力性质
第二章 气体的热力性质
本章要求:掌握理想气体和实际气体概念,熟练应用理想气体状态方程及理想气体定值比热进行各种热力计算。了解实际气体状态方程的各种表述形式及应用的适用条件。
1.基本概念
理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。
比热:单位物量的物体,温度升高或降低1K(1℃)所吸收或放出的热量,称为该物体的比热。 定容比热:在定容情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定容比热。
定压比热:在定压情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定压比热。
定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。
定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。
定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。
定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为
工程热力学—6 气体和蒸汽的流动(A5)
6 气体与蒸汽的流动——可压缩流体流动的热力学分析
工质的主要特征之一就是其流动性,许多能量转换过程也是伴随着工质(即流体)流动过程而完成的。如汽轮机中高温高压蒸汽的膨胀作功过程整体上可以看作是一个绝热过程,而细节上则是蒸汽通过动静叶片之间的通道流动并发生状态变化的过程。本章研究气体和蒸汽流动过程中的能量转换规律,但不涉及流动过程中流体微团之间、流体与壁面之间的相互作用,及有关阻力、黏性作用、流态、涡旋等,那些是流体力学的任务。
为了集中注意力,我们仅考虑一维可压缩流体流动。一维流动也可称为管内流动,工程上经常遇到的管内流动有三类:一是轴功为零,且管道短、流速高,可以忽略摩擦和传热的变截面等熵流;二是等截面长距离输送管道,无轴功和热量进出,摩擦是主要因素;三是等截面加热管或冷却管,无轴功出入,摩擦也可以忽略,如换热器管和锅炉水冷壁。本章以第一类流动为主要研究对象。
6.1 稳定流动的基本方程
6.1.1 连续性方程
1
qm?Acfv?constant (6-1a)
微分形式: 6.1.2 能量方程
dAdcfdv???0 (6-1b) Acfv处在稳定流动中气
第四章 溶液的热力学性质
第四章 溶液的热力学性质
一、选择题(共14小题,14分)
1.下列各式中,化学位的定义式是( )
??(nH)?A.?i????ni??p,nS,nj??(nA)?C.?i????ni??p,T,nj??(nG)?B.?i????ni?nV,nS,nj???(nU)?D.?i????ni??T,nS,nj
2.关于偏摩尔性质,下面说法中不正确的是( )
A.纯物质无偏摩尔量 B. T,p一定,偏摩尔性质就一定 C.偏摩尔性质是强度性质 D.强度性质无偏摩尔量 E.偏摩尔自由焓等于化学位
3.等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随A浓度的减小而减小,则B的偏摩尔体积将随A浓度的减小而( ) A.增加 B.减小 C.不变 D.不一定 4.对无热溶液,下列各式能成立的是( ) A. SE=0, VE=0 B. SE=0, AE=0 C. GE=0, AE=0 D. HE=0, GE=-TSE 5.苯(1)和环己烷(2)在303 K,0.1013 MPa下形成X1=0.9溶液。此条件下V1=89.96 cm3/mol,V2=109.4 cm3/mol,V1?