平行线知识点
“平行线知识点”相关的资料有哪些?“平行线知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“平行线知识点”相关范文大全或资料大全,欢迎大家分享。
平行线知识点+四大模型
平行线四大模型
平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.
判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角相等,两直线平行.
判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角相等,两直线平行,
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);
若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).
另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
2、平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同
旁内角也有相
第二章平行线与相交线知识点及测试题(四)
第二章平行线与相交线知识点及测试题(四)
掌握知识要点
一.余角、补角、对顶角
1,余角:如果两个角的和是直角,那么称这两个角互为余角.
2,补角:如果两个角的和是平角,那么称这两个角互为补角.
3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.
4,互为余角的有关性质:
①∠1+∠2=90°,则∠1、∠2互余;反过来,
若∠1,∠2互余,则∠1+∠2=90°;
②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,
则∠2=∠3.
5,互为补角的有关性质:
① 若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°
② .②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.
6,对顶角的性质:对顶角相等.
二.同位角、内错角、同旁内角的认识及平行线的性质
7,同一平面内两条直线的位置关系是:相交或平行.
8,“三线八角”的识别:
三线八角指的是两条直线被第三条直线所截而成的八个角.
正确认识这八个角要抓住: 同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁
沪教版七年级下册(知识点归纳)-相交线 平行线
相交线 平行线
邻补角、对顶角及性质两条直线相交直线的位置关系相交线两条直线被第三条直线所截平行线平行公理垂线及性质垂线段及性质同位角、内错角、同旁内角平行线的判定平行线的性质点到直线的距离
【相交线——对顶角、邻补角】
1、在同一平面内的(不重合的)两条直线位置关系:相交、平行; 在同一平面内的两条相交直线的位置关系:斜交、垂直。 ....
2、相交直线:斜交(两条直线夹角为锐角)
? 邻补角:有公共顶点,有一条公共边,且另一条边互为反向延长线的两个角互为邻补角。 ? 邻补角是互补的,但互补的角不一定是邻补角。 ?
若?A与?B互为邻补角,则?A??B?180;
?? 2条直线相交,有4对邻补角。 ? 对顶角:两个角有一个公共顶点,并且其中一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角互为对顶角。
? 若?A与?B互为对顶角,则?A??B; ? 2条直线相交,有2对对顶角。
3、相交直线:垂直(两条直线夹角为直角) ? 垂直的基本性质:在平面内经过直线上或直线外的一点作已知直线的垂线可以做一条,并且只能作一条。(过一点有且只有一条直线与已知直线垂直)
? 线段的垂直平分线:过线段中点且垂直于这条线段的直线。简称
平行线的性质及平行线之间的距离
掌握平行线的性质。体会平行线之间的距离的意义,会度量两条平行线之间的距离。
课
题
平行线的性质及平行线之间的距离 1. 掌握平行线的性质。 2. 体会平行线之间的距离的意义,会度量两条平行线之间的距离。 教学内容
教学目的
一、课前检测1、下面四个图形中,∠1 与∠2 是对顶角的图形 ( )
A、 B、 C、 D、 2、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是 ( ) o o A、 第一次右拐 50 ,第二次左拐 130 B、 第一次左拐 50 o,第二次右拐 50 o C、 第一次左拐 50 o,第二次左拐 130 o D、 第一次右拐 50 o,第二次右拐 50 o 3、同一平面内的四条直线若满足 a⊥b,b⊥c,c⊥d,则下列式子成立的是( ) A、a∥d B、b⊥d C、a⊥d D、b∥c o 4、如图,若 m∥n,∠1=105 ,则∠2= ( ) o o A、55 B、60 o C、65 D、75 o 5、下列说法中正确的是 ( ) A、 有且只有一条直线垂直于已知直线 B、 从直线外一点到这条直线的垂线段,叫做这点到这条直线距离 C、 互相垂直的两条线段一定相交 D、 直线 c 外一点 A 与直
平行线证明难题
第二章 平行线的性质和判定拔高训练
1.(1) 如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D',C的位置.若
∠EFB=65°,则?AED'等于__________.
(2) 如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.
(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.
'
2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( ) A.30°和150° B.42°和138° C.都等于10° D.42°和138°或都等于10°
3.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C, ∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有( )个数 A
平行线的证明
平行线的证明
1.如图,直线a//b,求证:?1??2.
2、已知;AB∥CD,AD∥BC,求证:∠B与∠D(12分)
DC
B A3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?
4.已知:如图,AB∥CD,∠B=∠D. 求证:∠1=∠2
AB 1 2DC
5、如图,已知四边形ABCD中,AD∥BC,AB∥DC,试说明∠A=∠C,∠B=∠D。
DA C
6、如图,已知∠A=∠1,∠C=∠D。试说明FD∥BC。
A E1
DF2
BC
平行线的证明 1 页 共 4 页 焦茵
B平行线的证明
7.如图,已知∠1=∠2,再添上什么条件可使AB∥CD成立?
并就你添上的条件证明AB∥CD .
AECF M
12B图5-6-10DN8、如图:已知AB∥A′B′,BC∥B′C′,那么∠B与∠B′有何关系?为什么?
9.如图,A、B、C、D四点在同一条直线上,EA⊥AD,FB⊥
平行线的易错题
第1章《平行线》易错题集(03):1.3 平
行线的性质
选择题 1.(2001?呼和浩特)如图,DE∥BC,EF∥AB,图中与∠BFE互补的角共( )个.
2个 A. B. 3个 C. 4个 D. 5个 2.(2000?荆门)如图所示,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( )
6个 A.
B. 5个 C. 4个 D. 2个 3.如图,BE平分∠ABC,DE∥BC,图中相等的角共有( )3对 B. 4对 C. 5对 D. 6对 A.
4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( ) 相等 B. 互余或互补 C. 互补 D. 相等或互补 A.
5.如图,已知AB∥CD,则图中与∠1互补的角共有( )
5个 A.
B. 4个 C. 3个 D. 2个
6.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为( )
2个 A. B. 3个 C. 4个 D. 5个
7.已知:如图所示,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠ACB相等的角有( )
2个 B. 3个 C. 4个 D.
相交线与平行线培优题
第十二讲 相交线与平行线
板块一 相交线、对顶角、邻补角、垂直
相交直线:如果直线a与直线b只有一个公共点,则称直线a与直线b相交。 相交线的性质:两直线相交只有一个交点。
对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 如图中,?1和?2,?3和?4是对顶角。
a 3O21对顶角的一个重要性质是:对顶角相等。 4b
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做互为邻补角。
如图中,?1和?3,?1和?4,?2和?3,?2和?4互为邻补角。 a3O2 14b注意:互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角。
垂线:垂直是相交的一种特殊情况,两条直线互相垂直,其中一条叫另一条直线的垂线,它们的交点叫垂
足。
A如图所示,可以记作“AB?CD于O” 注意:
过直线外一点有且只有一条直线与已知直线垂直;
DCO
直线外一点与直线上各点连结的所有线段中,垂线段最短,简单说成:垂线段最短。
B
【例1】已知:如图1,直线AB、CD交于点O,且?AOD??BOC?120°,求?AOC的度数。
AOD图1BC
1
【例2】如图2,AB、CD、EF交于点O,?AOE?25°
相交线与平行线竞赛试题
1.如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )
A、80 B、50 C、30 D、20
2.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )
A、43° B、47° C、30° D、60° 3.如图,直线a∥b,那么∠x的度数是 _________ . 4.如图,AB∥CD,∠ABF=∠DCE。试说明:∠BFE=∠FEC。
AFECBD
O
5.如图,已知AB//CD,BE平分?ABC,DE平分?ADC,?BAD=70,
O
(1)求?EDC的度数;(2)若?BCD=40,试求?BED的度数.
5.如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,则∠ABD= _________ 度.
6.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
7.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.
1
8.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.
9.如图,∠1+∠
7.3 平行线的判定
7.3 平行线的判定
学习目标
1.能根据平行线的判定公理证明平行线的两个判定定理,并能简单应用这个两个判定定理。2.初步了解证明的基本步骤和书写格式。
知识详解
1.平行线的判定公理
(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.
如图,推理符号表示为: ∵∠1=∠2, ∴AB∥CD.
同位角相等,两直线平行:①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.
(2)平行公理的推论:
①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c; ②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c. 2.平行线的判定定理 (1)判定定理1
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单记为:同旁内角互补,两直线平行. 符号表示:如下图,∵∠2+∠3=180°, ∴AB∥CD.
同旁内角互补,两直线平行:①定理是根据公理推理得出的真命题,可直接应用;②应用时,