几何重要吗
“几何重要吗”相关的资料有哪些?“几何重要吗”相关的范文有哪些?怎么写?下面是小编为您精心整理的“几何重要吗”相关范文大全或资料大全,欢迎大家分享。
价值观重要吗
学习践行社会主义核心价值观讲稿
开场白:大家好,根据学习安排今天我们共同学习社会主义核心价值观的有关内容。
今天讲核心价值观是想把它变为家常日用,所以今天用实实在在的大实话以这种方式来讲。说到核心价值观,好些人会问他和我有什么关系,也就是价值观重要吗。
我先不说他重要还是不重要,我们先看三个例子。一个国家、一个人、一个企业。这个国家是美国,作为一个移民国家,实际上他的建国史在这些影响力大的国家中是最短的,可是他是领导全球时间最长的,是什么东西支撑他这些年来成为世界的老大呢?
我们再看看马云,马云这个人,不仅中国人都认识,世界上好多人也都知道。这个人,初中考高中复课两年,高中考大学复课两年,也就说他是上了初四初五终于考上高中了,上了高四高五之后考上了大专,但是现在呢,他是凭什么成为中国首富呢?
还有一部苹果手机,经常电视上有新闻:就是果粉(苹果手机的粉丝)在一部新手机即将推出来的时候彻夜排队,大家不理解,是吧。为什么苹果手机这么招人喜欢呢?苹果手机有一个特别厉害的广告词,说的是:苹果手机唯一的缺点就是没有缺点。
咱们想想,这个国家这个人这个手机,背后到底隐藏着什么,能让他这么的力量强大。我们分别来看一下:
我们面临的挑战也许是新的,我们应对挑战
四个重要几何定理
托勒密定理
一些圆定理.doc定理图
定理的内容 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 定理的提出
一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。 证明
一、(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD
因为△ABE∽△ACD
所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)
而∠BAC=∠DAE,,∠ACB=∠ADE 所以△ABC∽△AED相似.
BC/ED=AC/AD即ED·AC=BC·AD (2) (1)+(2),得
AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD
(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)
四个重要几何定理
托勒密定理
一些圆定理.doc定理图
定理的内容 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 定理的提出
一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。 证明
一、(以下是推论的证明,托勒密定理可视作特殊情况。)
在任意四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD
因为△ABE∽△ACD
所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)
而∠BAC=∠DAE,,∠ACB=∠ADE 所以△ABC∽△AED相似.
BC/ED=AC/AD即ED·AC=BC·AD (2) (1)+(2),得
AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD
(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)
解析几何重要公式和结论
篇一:平面解析几何的公式与结论
平面解析几何的公式与结论
1.直线的五种方程
(1)点斜式 y?y1?k(x?x1) (直线l过点P1(x1,y1),且斜率为k). (2)斜截式 y?kx?b(b为直线l在y轴上的截距). (3)两点式 (4)截距式
y?y1y2?y1x?y
?
x?x1x2?x1
(y1?y2)(P1(x1,y1)、P2(x2,y2) (x1?x2)).
?1(a、b分别为直线的横、纵截距,a、b?0) ab
(5)一般式 Ax?By?C?0(其中A、B不同时为0).
2.两条直线的平行和垂直
(1)若l1:y?k1x?b1,l2:y?k2x?b2 ①l1||l2?k1?k2,b1?b2; ②l1?l2?k1k2??1.
(2)若l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0,且A1、A2、B1、B2都不为零, ①l1||l2?
A1A2
?B1B2
?C1C2
;
②l1?l2?A1A2?B1B2?0; 3.四种常用直线系方程 (1)定点直线系方程:经过定点P0(x0,y0)的直线系方程为y?y0?k(x?x0)(除直线x?x0),其中k是待定的系数; 经过定点P0(x0,y0)的直线系方程为A(x?x0)?B(y?y0)?0,其中A,
3几何选讲平面几何中几个重要定理的证明
初等几何选讲复习资料三
几何选讲平面几何中几个重要定理及证明
一、塞瓦定理
1.塞瓦定理及其证明
定理:在?ABC内一点P,该点与?ABC的三个顶点相连所在的三条直线分别交?ABC三边AB、BC、CA于点D、E、F,且D、E、F三点均不是?ABC的顶点,则有
D B F P C A ADBECF???1.
DBECFAE ADS?ADPS?ADC?证明:运用面积比可得DB?S. S?BDP?BDC根据等比定理有
S?ADPS?ADCS?ADC?S?ADPS?APC???S?BDPS?BDCS?BDC?S?BDPS?BPC,
ADS?APCBES?APBCFS?BPC?所以DBS.同理可得,. ???BPCFAS?APBECS?APCADBECF???1. 三式相乘得
DBECFA
注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”.
2.塞瓦定理的逆定理及其证明
定理:在?ABC三边AB、BC、CA上各有一点D、E、
ADBECF???1,F,且D、E、F均不是?ABC的顶点,若
DBECFA那么直线CD、AE、BF三线共点.
证明:设直线AE与直线BF交于点P,直线CP交A
竞赛讲座-平面几何四个重要定理
竞赛专题讲座-平面几何四个重要定理
重庆市育才中学 瞿明强
四个重要定理:
梅涅劳斯(Menelaus)定理(梅氏线)
△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、
R共线的充要条件是 塞瓦(Ceva)定理(塞瓦点)
。
△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的
充要条件是
托勒密(Ptolemy)定理
。
四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:
1. 设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:
。
【分析】CEF截△ABD→(梅氏定理)
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2. 过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)
DGF截△ACM→(梅氏定理)
∴===1
【评注】梅氏定理
3. D、E、F分别在△ABC的BC、CA、AB边上,
,AD、BE、CF交成△LMN
3.3剖析几何概型的五类重要题型
剖析几何概型的五类重要题型
解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A的概率计算公式:
P(A) 构成事件A的区域长度(面积或体积等).其次要学会构造随试验的全部结果所构成的区域长度(面积或体积等)
机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.
1.几何概型的两个特征:
(1)试验结果有无限多;
(2)每个结果的出现是等可能的.
事件A可以理解为区域 的某一子区域,事件A的概率只与区域A的度量(长度、面积或体积)成正比,而与A的位置和形状无关.
2..解决几何概型的求概率问题
关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.
3.用几何概型解简单试验问题的方法
(1)适当选择观察角度,把问题转化为几何概型求解.
(2)把基本事件转化为与之对应的总体区域D.
(3)把随机事件A转化为与之对应的子区域d.
(4)利用几何概型概率公式计算.
4.均匀随机数
在一定范围内随机产生的数,其中每一个数产生的机会是一样
的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand()函数可以产生0~1之间的均匀随机数.a~b之间的均匀随机数的产生:利用计算机或计算器产生0~
竞赛讲座-平面几何四个重要定理
竞赛专题讲座-平面几何四个重要定理
重庆市育才中学 瞿明强
四个重要定理:
梅涅劳斯(Menelaus)定理(梅氏线)
△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、
R共线的充要条件是 塞瓦(Ceva)定理(塞瓦点)
。
△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的
充要条件是
托勒密(Ptolemy)定理
。
四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:
1. 设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:
。
【分析】CEF截△ABD→(梅氏定理)
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2. 过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)
DGF截△ACM→(梅氏定理)
∴===1
【评注】梅氏定理
3. D、E、F分别在△ABC的BC、CA、AB边上,
,AD、BE、CF交成△LMN
立体几何(几何法)—线面角
立体几何(几何法)—线面角
例1(本小题满分12分)(注意:在试题卷上作答无效) .........
如图,四棱锥P?ABCD中,底面ABCD为菱形,PA?底面
PABCD,AC?22,PA?2,E是PC上的一点,PE?2EC。
(Ⅰ)证明:PC?平面BED;
(Ⅱ)设二面角A?PB?C为90,求PD与平面PBC所成角的大小。
【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所
C?EBAD以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.
设AC∩BD=F,连结EF.因为AC=22, PA=2,PE=2EC,故
23
PC=23,EC=3,FC=2, PCAC
从而FC=6,EC=6.
PCAC
因为FC=EC,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠PAC=90°, 由此知PC⊥EF.
PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED. (2)在平面PAB内过点A作AG⊥PB,G为垂足. 因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC. 又平面PAB∩平面PBC=PB, 故AG⊥平面PBC,AG⊥BC.
BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所
立体几何(几何法)—线面角
立体几何(几何法)—线面角
例1(本小题满分12分)(注意:在试题卷上作答无效) .........
如图,四棱锥P?ABCD中,底面ABCD为菱形,PA?底面
PABCD,AC?22,PA?2,E是PC上的一点,PE?2EC。
(Ⅰ)证明:PC?平面BED;
(Ⅱ)设二面角A?PB?C为90,求PD与平面PBC所成角的大小。
【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所
C?EBAD以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.
设AC∩BD=F,连结EF.因为AC=22, PA=2,PE=2EC,故
23
PC=23,EC=3,FC=2, PCAC
从而FC=6,EC=6.
PCAC
因为FC=EC,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠PAC=90°, 由此知PC⊥EF.
PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED. (2)在平面PAB内过点A作AG⊥PB,G为垂足. 因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC. 又平面PAB∩平面PBC=PB, 故AG⊥平面PBC,AG⊥BC.
BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所