线性规划的对偶问题可行原问题不可行则
“线性规划的对偶问题可行原问题不可行则”相关的资料有哪些?“线性规划的对偶问题可行原问题不可行则”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性规划的对偶问题可行原问题不可行则”相关范文大全或资料大全,欢迎大家分享。
线性规划原问题与对偶问题的转化及其应用
线性规划原问题与对偶问题的转化及其应用
摘 要
线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解.
关键词:线性规划;原问题;对偶问题 ;转化
Linear Programming is the Original Problem and the Transformation of
the Dual Problem and Applications
Abstract: Linear programming in operational research is research earlier, rapid development and wide application, the method is an important branch of mature, it is one of
线性规划的对偶
第四章 线性规划的对偶理论
一、填空题
1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的
线性规划问题与之对应,反之亦然。
2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。
5.若原问题可行,但目标函数无界,则对偶问题不可行。
6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。
﹡-
7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。
﹡﹡﹡﹡
8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。
﹡﹡﹡
10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。
11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条
线性规划的对偶
第四章 线性规划的对偶理论
一、填空题
1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的
线性规划问题与之对应,反之亦然。
2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。
5.若原问题可行,但目标函数无界,则对偶问题不可行。
6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。
﹡-
7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。
﹡﹡﹡﹡
8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。
﹡﹡﹡
10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。
11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条
简单的线性规划问题 - 教案
简单的线性规划问题(1)
三维目标
知识与能力:了解线性规划的常用术语、掌握确定二元一次不等式所表示的平面区域得方法
过程与方法:通过实例介绍线性规划的常用术语,利用二元一次方程将平面分成两部分进而确定二
元一次不等式所能表示的平面区域
情感态度与价值观:通过学习,激发学生探索欲望、热爱数学学习的激情,引导正确的价值观、人
生观,使学生不断建立信心,成为自主学习的真正主体。
教学过程: 一.创设情景
我们先考察生产中的遇到的一个问题:
某工厂生产甲、乙两种产品,生产1吨甲种产品需要A种原料4吨、B种原料12吨,产生的利润为2万元;生产1吨乙种产品需要A种原料1吨、B种原料9吨,产生的利润为1万元。现在库存A种原料10吨、B种原料60吨,如何安排生产才能使利润最大? 为理解题意,可将已知数据整理成下表: 甲种产品(1吨) 乙种产品(1吨) 现在库存(吨) A种原料(吨) B种原料(吨) 4 12 1 9 10 60 利润(万元) 2 1 设计划生产甲、乙两种产品的吨数分别为x,y,利润为P(万元)。根据题意,A,B两种原料分别不得超过10吨和60吨,又常量不可能是负数,于是可得二元一次不等
线性规划问题的教学设计
3.3.2简单的线性规划问题的教学设计
一、教材分析:
本节是新教材(人教A版)必修5:3.3.2简单的线性规划问题(第一课时)的内容:在学习了利用不等关系描述客观世界、二元一次不等式(组)与平面区域的对应关系两节内容后,又补充了直线的斜率和倾斜角的基础上来学习本节的线性规划问题。经过前两节的铺垫,本节课学生将学习以下几点:
(1)正确构造线性约束条件、线性目标函数; (2)明确线性目标函数的几何意义; (3)利用图解法求线性目标函数的最值问题。
二、学情分析:
本节课之前学生通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。从数学知识上看,本节线性规划求最优问题涉及多个已知数据,多个字母变量、多个不等关系,如果不在前面打好基础,就会增加本节课学习的难度。学生没有学习直线方程的斜截式,如果本节涉及截距的话,怕学生理解不到位,所以,我选择避开截距,而继续用初中学生比较熟悉的与y轴交点的纵坐标来说明。从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还不熟练,这成了学生学习的困难。
三、教学目标:
知识和技能:
(1)了解线性规划的意义以及线性约束条件、线
大学论文:线性规划问题
线性规划 毕业论文
聊 城 大 学
LIAOCHENG UNIVERSITY
线性规划问题在实际生活中的应用
线性规划 毕业论文
线性规划(LP)问题的求解
摘要:生活中的很多问题涉及线性规划问题,如组合投资、运输问题、生产组织问题等。本文中通过将线性规划问题的数学模型的一般形式转变为标准形式,从而应用单纯形法求解。但单纯形法的运算量较大,应用excel、matlab等软件求解既快又准。 关键词:线性规划、单纯形法、matlab\excel求解
Linear programming (LP) problems’ solving
Abstract:Many problems refer to the linear programming problems in our life,such as portfolio investment、transportation problem、organization of production problems,and so on. In this paper through transforming the general form of the mathematical model of linear progr
3.3.2简单的线性规划问题(1)
3.3.2简单的线性规划问题(1)
班级 姓名 学习目标:(1)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值。 (2)已知目标函数最值求相应的参数值或参数范围 学习过程:
(一)复习引入:
某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有的日生产安排是什么?
进一步:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
(二)新课讲授
1、概念引入:
[来源:学科网ZXXK]
?x?2y?8,?4x?16,??(1)若z?2x?3y,式中变量x、y满足上面不等式组?4y?12,,则不等式组叫做变
?x?0???y?0量x、y的 ,z?2x?3y叫做 ;又因为这里的z?2x?3
线性规划化问题的简单解法
“简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。
简单线性规划问题的几种简单解法
依不拉音。司马义(吐鲁番市三堡中学,838009)
“简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。
简单的线性规划是指目标函数只含两个自变量的线性规划。简单线性规划问题的标准型为:
A1x B1y C1 0( 0) A2x B2y C2 0( 0)约束条件 ,(m N ),目标函数 z Ax By,
Amx Bmy Cm 0( 0)
下面介绍简单线性规划问题的几种简单解法。
1. 图解法
第一步、画出约束条件表示的可行区域,这里有两种画可行区域的方法。
⑴代点法:直线Ax+By+C=0(c不为0)的某侧任取一点,把它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。
⑵B判别法:若B>0(<0),则不等式Ax+By+C>0(<0)表示的区域在直
线Ax+By+C=0的上方;若B>0(<0),则不等式Ax+By+C<0(>0)表示的区域在直线Ax+B
简单的线性规划问题教学反思
篇一:4.3简单线性规划问题的实际应用教学反思.doc课后反思
4.3简单线性规划的实际应用教学反思
本节课是简单的线性规划的应用的延伸,通过上一节课的学习,学生们已经掌握了利用线性规划知识解决实际应用的一般方法。所以这节课的主要任务是巩固提高学生的应用能力,同时利用实际问题加强对德育目标的渗透。一下是对整个教学过程的反思:
一、 在教学过程中,首先复习了上一节课的内容,帮助学生巩固所学内容,其中在填空题部分,要求学生总结利用线性规划问题解决实际问题的一般方法,这个环节,虽然简单但很重要,如果对上节课的内容掌握不好,将直接影响这节课的讲课效果。通过抽查学生的导学案,看到学生对前一节课的掌握较好。练习1,练习2,更测试了学生的实际应用能力,这确保了本节课可以进入的新知识的讲授过程。
二、 这节课,我首先利用两个例题讲解资源配置问题,其中例一是以08年奥运会为背景的线性规划问题。通过这个例题,我们可以向学生渗透爱国主义教育,体现出我们民族的自信,开放等优秀品格。同时提到我们今年又成功申请冬季奥运会,是当今世界上唯一一个即申请了夏季奥运会,又申请了冬季奥运会的国家,足以让我们中国人引以为傲。看学生们的反应,显然例一学生解决的比例二更好一些。学生能更好的掌握
线性规划问题建模与求解
机械工程学院工业工程专业
学号: 姓名:
线性规划问题建模与求解
一.实验目的
1. 掌握线性规划问题建模基本方法。
2. 熟练应用Excel“规划求解”功能对线性规划问题进行建模与求解。
3.掌握线性规划问题的对偶理论和灵敏度分析。
二.实验设备 硬件:PC机。
软件:Microsoft Excel。
三.实验内容
1.建立线性规划问题的数学模型。
2.利用Excel“规划求解”功能对线性规划问题进行建模与求解。 3.根据实验优化结果,进行灵敏度及经济分析。
四.实验步骤
某出版单位有4500个空闲的印刷机时和4000个空闲的装订工时,拟用于下列4种图书的印刷和装订。已知各种书每册所需的印刷和装订工时如表2所示。
表2 印刷和装订工时数据表
工 序 书 印刷 装订 预期利润(千元/千册) 问:
①该出版单位为了实现利润最大化,如何安排4种图书的生产? ②该单位是否愿意出50元的加班费,让工人加班1小时?
③由于管理工作的进步,使得第1种产品成本每件下降0.2元,此时得最优生产方案是否有变化,总利润是多少?
④出版第2种书的方案之一是降低成本,若第2种书的印刷加装订成本合计每册6元,则第2种书的成本为多少时,