初中数学解题题典
“初中数学解题题典”相关的资料有哪些?“初中数学解题题典”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学解题题典”相关范文大全或资料大全,欢迎大家分享。
初中数学选择题常用解题方法
初中数学选择题常用解题方法
选择题一般由题干(题设)和选择支(选项)组成.如果题干不是完全陈述句,那么题干加上正确的选择支,就构成了一个真命题;而题干加上错误的选择支,构成的是假命题,错误的选择支也叫干扰支,解选择题的过程就是通过分析、判断、推理排除干扰支,得出正确选项的过程.
解选择题的基本要求是:快、准.
解选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特例判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等.
解选择题的原则是:既要注意题目特点,充分应用供选择的答案所提供的信息,又要有效地排除错误答案可能造成的干扰,所以必须注意以下几点:认真审题;先易后难;大胆猜想;细心验证.
解选择题的关键是:能熟练运用各种解题方法或手段,以提高解题的效率;充分利用选择支所提供的信息与“只有一个正确答案”的方向,讲究解题策略,充分发挥直观的作用,发现其特殊的数量关系和图形位置等特征,迅速解题.
解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最
初中数学一题多解题
初中数学一题多解题
例题一、两个连续奇数的积是323,求出这两个数 方法一、
设较小的奇数为x,另外一个就是x+2 x(x+2)=323
解方程得:x1=17,x2=-19 所以,这两个奇数分别是: 17、19,或者-17,-19 方法二、
设较大的奇数x,则较小的奇数为323/x 则有:x-323/x=2
解方程得:x1=19,x2=-17
同样可以得出这两个奇数分别是: 17、19,或者-17,-19 方法三、
设x为任意整数,则这两个连续奇数分别为: 2x-1,2x+1
(2x-1)(2x+1)=323
即4x^2-1=323 x^2=81
x1=9,x2=-9
2x1-1=17,2x1+1=19 2x2-1=-19,2x2+1=-17
所以,这两个奇数分别是: 17、19,或者-17,-19 方法四、
设两个连续奇数为x-1,x+1 则有x^2-1=323
x^2=324=4*81 x1=18,x2=-18 x1-1=17,x1+1=19 x2-1=-19,x2+1=-17
所以,这两个奇数分别是: 17、19,或者-17,-19
例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,
初中数学解题技巧
1. 配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2. 因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3. 换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4. 判别式法与韦达定理
一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函
初中数学解题技巧
1. 配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2. 因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3. 换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4. 判别式法与韦达定理
一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函
初中数学大纲初中数学知识点总结(金典版)
初中数学大纲
一、考试指导思想
初中毕业数学学业考试是依据《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)进行的义务教育阶段数学学科的终结性考试。考试要有利于全面贯彻国家教育方针,推进素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改革,培养学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。
数学学业考试命题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,面向全体学生,使具有不同认知特点、不同数学发展程度的学生都能正常表现自己的学习状况。学业考试要求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。
数学学业考试要重视对学生学习数学的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价;学业考试试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致,加强对学生思维水平与思维特征的考查,使试题的解答过程体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。
高中化学无机推断题解题方法及最新试题题典
实验中学高三化学组
2010届高考化学无机推断题解题方法及最新试题题典(按族分类) 一.金属部分:
[题眼归纳] 1.特征现象:
(1)焰色反应:Na(黄色)、K(紫色) (2)浅黄色固体:S或Na2O2或AgBr或Mg3N2
2+3+2+-2-2-(3)有色溶液:Fe(浅绿色)、Fe(黄色)、Cu(蓝色)、MnO4(紫色)、CRO4(黄色)、Cr2O7
(橙色)
有色固体:红色(Cu、Cu2O、Fe2O3)、红褐色[Fe(OH)3]
蓝色[Cu(OH)2] 黑色(CuO、FeO、FeS、CuS、Ag2S、PbS)
黄色(AgI、Ag3PO4) 白色[Fe(0H)2、CaCO3、BaSO4、AgCl、BaSO3]
有色气体:Cl2(黄绿色)、NO2(红棕色) (4)特征反应现象:白色沉淀[Fe(OH)2]?空气???红褐色[Fe(OH)3]
(5)既产生淡黄色沉淀又产生刺激性气味的气体:S2O3+2H=S↓+SO2↑+H2O (Na2S2O3 + H2SO4) (6)溶液颜色变为浅绿色,并产生淡黄色沉淀: 2FeCl3+H2S=2FeCl2+S↓+2HCl (7) 通CO2变
初中数学规律探究题解题方法
初中数学规律探究题的解法指导
广南县篆角乡初级中学 郭应龙
新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。在历年的中考或学业水平考试中屡见不鲜,频繁考查,考生大都感到困难重重,无从下手,导致丢分。解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。
一、数式规律探究
通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:
1.一般地,常用字母n表示正整数,从1开始。 2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1… 奇数…2n-3,2n-1,2n+1,2n+3…
初中(中考)数学常见解题模型及思路(压轴题题眼全覆盖)
上下:2.04 左右:2.17
初中数学常见解题模型及思路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222 (x?y)?x?y?2xy?2x?2y(? x?)2y2?xy2222 (x?y)?x?y?2xy?(x?)y?4 xy 加减配合,灵活变型。
2(x?)?x2?3.特殊公式
1x1?2的变型几应用。 x24.立方差公式:a3?b3? (a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+2222n 令S=1+
初中(中考)数学常见解题模型及思路(压轴题题眼全覆盖)
上下:2.04 左右:2.17
初中数学常见解题模型及思路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222 (x?y)?x?y?2xy?2x?2y(? x?)2y2?xy2222 (x?y)?x?y?2xy?(x?)y?4 xy 加减配合,灵活变型。
2(x?)?x2?3.特殊公式
1x1?2的变型几应用。 x24.立方差公式:a3?b3? (a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+2222n 令S=1+
初中应用题的解题技巧
应用问题的解题技巧(三课时)
教学目标:应用问题是中学数学的重要内容.它与现实生活有一定的联系,它通过量与量的关系以及图形之间的度量关系,形成数学问题.应用问题涉及较多的知识面,要求学生灵活应用所学知识,在具体问题中,从量的关系分析入手,设定未知数,发现等量关系列出方程,获得方程的解,并代入原问题进行验证.这一系列的解题程序,要求对问题要深入的理解和分析,并进行严密的推理,因此对发展创造性思维有重要意义.
重点:解应用问题的技能和技巧.
1.直接设未知元
在全面透彻地理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫作直接设未知元法. 例1 某校初中一年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2∶1.求参加竞赛的与未参加竟赛的人数及初中一年级的人数.
分析 本例中要求三个量,即参赛人数、未参赛人数,以及初中一年级人数.由已知条件易知,可直接设未参赛人数为x,那么参赛人数便是3x.于是全年级共有(x+3x)人.
由已知,全年级人数减少6人,即(x+3x)-6, ①而未参加人数增加6人时,则参加人数是未参加人数