热力学统计物理课程小论文
“热力学统计物理课程小论文”相关的资料有哪些?“热力学统计物理课程小论文”相关的范文有哪些?怎么写?下面是小编为您精心整理的“热力学统计物理课程小论文”相关范文大全或资料大全,欢迎大家分享。
热力学统计物理课程习题集
热力学统计物理课程习题集
热力学统计物理课程习题集
一、 热力学部分
1. 在0度和1pn下,测得一铜块的体膨胀系数和等温压缩系数分别为??4.85?10?5K?1和?T?7.8?10?7pn?1。?和?T可近似看作常数。今
使铜块加热至10度。问:
(a)压强要增加多少pn才能使铜块体积维持不变? (b)若压强增加到100pn,铜块体积改变多少? 2. 一理想弹性物质的物态方程为J?bT(LL0?L0L22)其中L是长度,L0是
张力J为零时的L的值,它只是温度T的函数,b是常数。试证明:
(a)等温杨氏模量为Y?bTA(330LL0?2L0L22),在张力为零时,Y0?3bTA
L(b)线膨胀系数???0?1LTL?133,?0?2?1dL0L0dT
L0?2?1(c)上述物态方程适用于橡皮带,设T=300K,b?1.33?10N?K,
A?1?10?6m2,?0?5?10?4K?1。试计算当的曲线。
LL0分别为0.5,1.0,1.5,
和2.0时的J,Y,?,对
LL03. 试证明,在某一过程中理想气体的热容量Cn如果是常数,该过程一定是多方过程,多方指数n?定容热容量是常量。
1
Cn?CpCn?CV。假设气体的定压热容量和
热力学统计物理课程习
热力学统计物理课后答案2
第六章 近独立粒子的最概然分布
6.1中 试根据式(6.2.13)证明:在体积V内,在?到ε+dε的能量范围内,三维自由粒子的量子态数为
D???d??2?Vh3?2m?2?2d?.
?L331 解: 式(6.2.13)给出,在体积V
Vh3内,在px到px?dpx,py到
py?dpy,px到px?dpx的动量范围内,自由粒子可能的量子态数为
dpxdpydpz. (1)
用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V内,动量大小在p到p?dp范围内三维自由粒子可能的量子态数为
4πVh3pdp. (2)
2上式可以理解为将?空间体积元4?Vp2dp(体积V,动量球壳4πp2dp)除以相格大小h3而得到的状态数. 自由粒子的能量动量关系为
??p22m.
因此
p?2m?,pdp?md?.
?d?将上式代入式(2),即得在体积V内,在?到?三维自由粒子的量子态数为
D(?)d??2πVh331的能量范围内,
?2m?2?2d?. (3)
6.4 在极端相对
热力学统计物理课后答案11
第一章 热力学的基本规律
1.1 试求理想气体的体胀系数?,压强系数?和等温压缩系数??。 解:已知理想气体的物态方程为
pV?nRT,
(1)
由此易得
??1??V?nR1??, ??V??T?ppVT (2) (3) (4)
??1??p?nR1??, ??p??T?VpVT?T??1??V??1?????V??p?T?V??nRT?1?. ???2?p?p??1.2 证明任何一种具有两个独立参量T,p的物质,其物态方程可由实验测得的体胀系数?及等温压缩系数??,根据下述积分求得:
lnV=??αdT?κTdp?
如果??1T,?T?1p,试求物态方程。
解:以T,其全微分为
p为自变量,物质的物态方程为
V?V?T,p?,
??V???V?dV??dT???dp. ???T?p??p?T (1)
全式除以V,有
dVV?1??V?1??V?dT???dp. ??V??T?pV??p?T根据体胀系数?和等温压缩系数?T的定义,可将上式改写为
dVV??dT??Tdp.
热力学统计物理论文
热力学统计论文
对《热力学及第一定律》的讨论 目 录
摘要??????????????????????????2 关键字?????????????????????????2
引言???????????????????????????????2 正文???????????????????????????????3 一、热力学基本概念????????????????????????3 1.1状态与状态函数??????????????????????3 二、热力学第一定律的产生????????????????????4 2.1历史背景????????????????????????4 2.2建立过程????????????????????????6
三、热力学第一定律的表述????????????????7 四,热力学第一定律的应用????????????????8
4.1焦耳定律????????????????????8 4.2热机????????????????????9 4.3其他????????????????????9 总结????????????????????????10 参考文献???????
热力学统计物理论文
热力学统计论文
对《热力学及第一定律》的讨论 目 录
摘要??????????????????????????2 关键字?????????????????????????2
引言???????????????????????????????2 正文???????????????????????????????3 一、热力学基本概念????????????????????????3 1.1状态与状态函数??????????????????????3 二、热力学第一定律的产生????????????????????4 2.1历史背景????????????????????????4 2.2建立过程????????????????????????6
三、热力学第一定律的表述????????????????7 四,热力学第一定律的应用????????????????8
4.1焦耳定律????????????????????8 4.2热机????????????????????9 4.3其他????????????????????9 总结????????????????????????10 参考文献???????
热力学统计物理习题
《热力学统计物理2》教学大纲
课程名称(英文):热力学统计物理2(Thermodynamics and Statistical Mechanics Ⅱ)
课程代码:0612933 课程类别:提高拓宽课程 学 时:34学时 学 分:2学分 考核办法:考查
适用对象:物理学本科专业
一、课程简介
《热力学统计物理2》课程是高等学校物理学专业本科选修的课程。是在《热力学统计物理1》的基础上进一步掌握热力学统计物理的基本概念和原理,加深与扩展热力学统计物理的内容,使学生对热力学统计物理的概念、原理与基本理论有更透彻的理解与掌握。同时掌握用热力学统计物理解决实际问题的方法,进一步提高学生的解题技巧与能力。为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。
二、教学目的及要求
1、掌握多元系热力学函数的一般性质和多元系的热力学方程,了解多元系的化学平衡条件。
2、系综理论可以应用于有相互作用粒子组成的系统。掌握系综理论的基本概念,以及微正则系综、正则系综和巨正则系综。
3、进一步提高学生的解题技巧与能力。为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。
三、教学重点和难点
教学重点和难点:多元系的热力
热力学与统计物理答案
第一章 热力学的基本规律
习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:
nRT PV = V
nRT P P nRT V ==; 所以, T
P nR V T V V P 11)(1==??=α T PV
Rn T P P V /1)(1==??=β P P nRT V P V V T T /111)(12=--=??-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:?-=)(ln dp dT V T κα如果1
T α= 1T p
κ= ,试求物态方程。 解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,
dp p V dT T V dV T p )()(??+??=, 因为T T p p
V V T V V )(1,)(1??-=??=κα 所以,
dp dT V dV dp V dT V dV T T κακα-=-=, 所以, ?-=dp dT V T
热力学统计物理习题、作业
热力学统计物理习题、作业
本课程习题、作业分为三类。1随手练习:结合教学具体内容设置,供学生在课后复习时使用,边复习边练习,起到加深理解、熟悉运算技巧、及时巩固所学知识的作用,其中有些难度的可作为习题课讨论内容;2习题:与随手练习相比,难度与综合性均略有提高,放在每章后面,作为课外作业。其中又分为两个层次,带星号的选自国内外考博、考硕中的难题,供有志于此业务方向的学生练习;3综合性作业:有助于学生作阶段性小结或全课程总结。
1、随手练习:
第一章 随手练习题
L.S 1.3.2 经典二维转子,可以用广义坐标?,?和广义动量p?,p?描述。转子
22的能量表达式为??(p??p?/Sin2?)/2I,其中I为转子的转动惯量。证明在μ空间
中等能曲面所包围的相体积为 ?(?)????d?d?dp?dp??8?2I?
?L.S 1.3.3 自由的刚性双原子分子与弹性双原子分子其μ空间各是多少维?分别写出它们的相体积元和能量表达式。
L.S 1.3.6 利用L.S 1.3.2的结果,求转子的态密度。
L.S 1.3.7 已知光子的能量与动量的关系为???cp,其中c为光速,处于同一平动状态的光子还可处在两个不
热力学统计物理习题、作业
热力学统计物理习题、作业
本课程习题、作业分为三类。1随手练习:结合教学具体内容设置,供学生在课后复习时使用,边复习边练习,起到加深理解、熟悉运算技巧、及时巩固所学知识的作用,其中有些难度的可作为习题课讨论内容;2习题:与随手练习相比,难度与综合性均略有提高,放在每章后面,作为课外作业。其中又分为两个层次,带星号的选自国内外考博、考硕中的难题,供有志于此业务方向的学生练习;3综合性作业:有助于学生作阶段性小结或全课程总结。
1、随手练习:
第一章 随手练习题
L.S 1.3.2 经典二维转子,可以用广义坐标?,?和广义动量p?,p?描述。转子
22的能量表达式为??(p??p?/Sin2?)/2I,其中I为转子的转动惯量。证明在μ空间
中等能曲面所包围的相体积为 ?(?)????d?d?dp?dp??8?2I?
?L.S 1.3.3 自由的刚性双原子分子与弹性双原子分子其μ空间各是多少维?分别写出它们的相体积元和能量表达式。
L.S 1.3.6 利用L.S 1.3.2的结果,求转子的态密度。
L.S 1.3.7 已知光子的能量与动量的关系为???cp,其中c为光速,处于同一平动状态的光子还可处在两个不
热力学与统计物理答案
第一章 热力学的基本规律
习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:
nRT PV = V
nRT P P nRT V ==; 所以, T
P nR V T V V P 11)(1==??=α T PV
Rn T P P V /1)(1==??=β P P nRT V P V V T T /111)(12=--=??-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:?-=)(ln dp dT V T κα如果1
T α= 1T p
κ= ,试求物态方程。 解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,
dp p V dT T V dV T p )()(??+??=, 因为T T p p
V V T V V )(1,)(1??-=??=κα 所以,
dp dT V dV dp V dT V dV T T κακα-=-=, 所以, ?-=dp dT V T