微分方程分离变量怎么分离
“微分方程分离变量怎么分离”相关的资料有哪些?“微分方程分离变量怎么分离”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微分方程分离变量怎么分离”相关范文大全或资料大全,欢迎大家分享。
D7_2可分离变量微分方程
第二节 可分离变量微分方程可分离变量方程
第七章
dy f1 ( x) f 2 ( y ) dx M1 ( x)M 2 ( y) d x N1 ( x) N 2 ( y) d y 0转化
解分离变量方程 g ( y) d y f ( x) d x目录 上页 下页 返回 结束
分离变量方程的解法:
g ( y ) d y f ( x) d xg ( ( x)) ( x) d x f ( x) d x两边积分, 得
①
设 y= (x) 是方程①的解, 则有恒等式
f ( x) d x
设左右两端的原函数分别为 G(y), F(x), 则有 ②
当G(y)与F(x) 可微且 G (y) g(y) 0 时, 说明由②确定的隐函数 y= (x) 是①的解. 同样, 当 F (x) = f (x)≠0 时, 由②确定的隐函数 x= (y) 也是①的解.
称②为方程①的隐式通解, 或通积分.目录 上页 下页 返回 结束
例1. 求微分方程
的通解.
dy 2 3 x d x 说明: 在求解过程中 解: 分离变量得 y 每一步不一定是同解 变形, 因此可能增、 两边积分 减解. 或 3 ln y x C1 得即
令C
第二节可分离变量的微分方程
第二节 可分离变量的微分方程
教学目的:熟练掌握可分离变量的微分方程的解法 教学重点:可分离变量的微分方程的解法 教学难点:可分离变量的微分方程的解法 教学内容:
本节开始,我们讨论一阶微分方程
y??f(x,y) (1)
的一些解法.
一阶微分方程有时也写成如下的对称形式:
P(x,y)dx?Q(x,y)dy?0 (2)
在方程(2)中,变量x与y对称,它既可以看作是以为x自变量、y为未知函数的方程
dyP(x,y)?? (Q(x,y)?0), dxQ(x,y)也可看作是以x为自变量、y为未知函数的方程
dxQ(x,y)?? (P(x,y)?0), dyP(x,y)
在第一节的例1中,我们遇到一阶微分方程
dy?2x, dx或 dy?2xdx. 把上式两端积分就得到这个方程的通解:
y?x2?C。
但是并不是所有的一阶微分方程都能这样求解。例如,对于一阶微分方程
dy?2xy2 (3) dx就不能像上面那样
微分方程讲义
课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第七章 微分方程 第一讲 微分方程的基本概念 教学要求: 微分方程的基本概念以及微分方程阶的概念。 重 点:微分方程的基本概念,微分方程阶的概念 难 点: 微分方程的概念; 微分方程阶的概念 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 15分钟 2 微分方程的问题举例 30分钟 3 微分方程概念以及阶数练 45分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习导数和高阶导数的概念 二、微分方程问题举例及引出 函数是客观事物的内部联系在数量方面的反映?利用函数关系又可以对客观事物的规律性进行研究?因此如何寻找出所需要的函数关系?在实践中具有重要意义?在许多问题中?往往不能直接找出所需要的函数关系?但是根据问题所提供的情况?有时可以列出含有要找的函数及其导数的关系式?这样的关系就是所谓微分方程?微分方程建立以
12微分方程
第十二章 微分方程
一、内容提要
(一)主要定义
【定义12.1】 微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程.未知函数是一元函数的叫做常微分方程; 未知函数是多元函数的叫做偏微分方程.
【定义12.2】 微分方程的阶 微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶.
一般形式为: Fx,y,y?,y??,?,y标准形式为:y?n??(n)??0.
??fx,y,y?,?,y?n?1?.
?【定义12.3】 微分方程的解 若将函数y???x?代入微分方程使其变成恒等式 即 F?x,??x?,???x????n???x????0,
或者 ??n??x????x?,?,??n?1??x?? f?x,?x,?????则称y???x?为该方程的解.
根据y?y?x?是显函数还是隐函数 ,分别称之为显示解与隐式解.若解中含有任意常数,当独立的任意常数的个数正好与方程的阶数相等时该解叫做通解(或一般解);不含有任意常数的解叫特解.
【定义12.4】 定解条件 用来确定通解中任意常数的条件称为定解条件,最常见的定解条件是初始条件.
例
【例1
微分方程作业
P10习题
1.用Euler法和改进的Euler法求u’=-5u (0≤t≤1),u(0)=1的数值解,步长h=0.1,0.05;并比较两个算法的精度。
解:function du=Euler_fun1(t,u) du=-5*u;clear;
h=0.1;tend=1;N=1/h;t(1)=0;u(1)=1; t=h.*(0:N); for n=1:N
u(n+1)=u(n)+h*Euler_fun1(t(n),u(n)); end
plot(t,u,'*');hold on for n=1:N
v(1)=u(n)+h*Euler_fun1(t(n),u(n)); for k=1:6
v(k+1)=u(n)+h/2*(Euler_fun1(t(n),u(n))+Euler_fun1(t(n+1),v(k))); end
u(n+1)=v(k+1); end
plot(t,u,'o');
sol=dsolve('Du=-5*u','u(0)=1'); u_real=eval(sol); plot(t,u_real,'r');
将上述 h 换为0.05得:
由图像知道:
显然改进的Euler法要比Euler法
分离变量法在求解波动方程中的应用
龙源期刊网 http://www.qikan.com.cn
分离变量法在求解波动方程中的应用
作者:王平心
来源:《科技视界》2014年第34期
【摘 要】分离变量法又称傅里叶级数法,它是求解数学物理方程定解问题的最常用和最基本的方法之一。该方法的基本思想是将偏微分方程的定解问题转化为常微分方程的定解问题。将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。它能够求解相当多的定解问题,特别是对一些常见区域上混合问题和边值问题,都可以用分离变量法试着求解。本文将讨论分离变量法在求解波动方程中的应用。 【关键词】分离变量法;波动方程;求解 0 引言
自然界很多物理现象都可以归结为波动问题,在机械工程中经常遇到的振动问题,可归结为机械波;在船舶工业中使用的声纳,可归结为声波问题;在广播领域和光学领域,可归纳出电磁波。他们都具有相同的数学物理基础,并且可以用一个式子表示:
我们称它为波动方程,因为它描述了自然界的波动这种运动形式,其中△为拉普拉斯算子。△中,变量的个数表示波动船舶空间的维数,现实生活中的波动,一般都是三维的。但是为
裘布依微分方程
1.答:对于底坡i=0、 i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向变小。而根据渗流连续性原理,可知q=常量。
那么,由裘布依微分方程
q??Kh?H ?x
可知??H沿流向将变大,即水头线越来越弯曲,其形状H为一上凸的曲线。?x
由此,可知习题6-1图所示的水头线形状不正确,图中红色曲线为正确的水头线形状。
(a) (b)
习题6-1图
2.答:
(a)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向变小。而根据渗流连续性原理,可知q=常量。 那么,由裘布依微分方程
q??Kh?H ?x
可知?
?H沿流向将变大,即水头线越来越弯曲, 其形状为一上凸的曲线。?x
(a) (b)
习题6-2图
(b)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流向不变。根据渗流连续性原理,可知q=常量。 那么,由裘布依微分方程
q??Kh?H ?x可知??H沿流向将不变,水头线H为一斜直线。?x
(c)对于底坡i>0条件下均质潜水含水层二维流,渗流宽度不变,而渗流厚度h沿流
节微分方程模型
第三节 微分方程模型
本节介绍确定性动态系统的微分方程建模。首先回顾物理领域的微分方程模型,然后介绍今非物理领域的微分方程模型。
一、徽分方程应用举例
人们对于微分方程的研究,早在十六七世纪微积分建立的时候就已经开始了,在17世纪和18世纪初得到了迅速的发展,成为研究自然现象的有力的工具。早期的研究与几何及力的研究关系密切。在17、18世纪,人们借助于微分方程,在力学、天文学、物理学等领域中,取得了重要的成就。
在一些应用问题中, 往往不能直接找出所需要的函数关系。 但是,可以根据问题所提供的线索,列出含有待定函数及其导数的关系式,称这样的关系式为微分方程模型。给出微分方程模型之后,对它进行研究,找出未知函数这一过程称为解微分方程。
下面给出的几个问题都是与时间t有关。对于一个依赖于时间t的量y的情况, 建立一个关于
,y与t的关系式, 它在任何时刻均成立。对这个方程积分, 便得到一个只含
的新方程。新方程中含有积分常数, 并且对于任何特定的t仍然成立。
。对于任何确
有y和t而不含
然后,利用问题中的一些特定信息,确定这些积分常数,于是,得函数定的t0,都可以算出
。
一般来说,求解一个应用问题时,可以按照如下步骤:
节微分方程模型
第三节 微分方程模型
本节介绍确定性动态系统的微分方程建模。首先回顾物理领域的微分方程模型,然后介绍今非物理领域的微分方程模型。
一、徽分方程应用举例
人们对于微分方程的研究,早在十六七世纪微积分建立的时候就已经开始了,在17世纪和18世纪初得到了迅速的发展,成为研究自然现象的有力的工具。早期的研究与几何及力的研究关系密切。在17、18世纪,人们借助于微分方程,在力学、天文学、物理学等领域中,取得了重要的成就。
在一些应用问题中, 往往不能直接找出所需要的函数关系。 但是,可以根据问题所提供的线索,列出含有待定函数及其导数的关系式,称这样的关系式为微分方程模型。给出微分方程模型之后,对它进行研究,找出未知函数这一过程称为解微分方程。
下面给出的几个问题都是与时间t有关。对于一个依赖于时间t的量y的情况, 建立一个关于
,y与t的关系式, 它在任何时刻均成立。对这个方程积分, 便得到一个只含
的新方程。新方程中含有积分常数, 并且对于任何特定的t仍然成立。
。对于任何确
有y和t而不含
然后,利用问题中的一些特定信息,确定这些积分常数,于是,得函数定的t0,都可以算出
。
一般来说,求解一个应用问题时,可以按照如下步骤:
06 常微分方程
同济大学五版高等数学学习资料
第六章 常微分方程
一. 求解下列微分方程: 1. y' ex y
+ex=0.
解.
dydx=ex(e y 1), dye y 1
=exdx ln1 ey
=ex, 1 ey=cee xc
y=ln(1 ce
e x
).
2. dy dx
=(1 y2
)tanx
y(0)=2
解.
dy
1 y
2
=tanxdx
11+12lncy1 y= lncosx, y(0) = 2, 2lnc1+21 2=0, ln
1+y13+cos2x
3(1 y)=lncos2x, y=3 cos2x
二. 求解下列微分方程:
1. x x
1+ey 1 x
dx+ey
y dy=0 xey
x
1 解. dx y dy
=x
. 1+ey
令
x
y
=u,x=yu.(将y看成自变量) dxdy=u+ydudy
, 所以 u+ydudy=eu(u 1)
1+eu duueu euudy1+eu u= +eu
y=1+eu
c= 1
3
同济大学五版高等数学学习资料
u+eu 1dyd(u+eu)dy1+eu
ln= ln=ln= , = , ydu c yu+euyyu+eu
x
cc1u+euy