利用行列式分解因式论文
“利用行列式分解因式论文”相关的资料有哪些?“利用行列式分解因式论文”相关的范文有哪些?怎么写?下面是小编为您精心整理的“利用行列式分解因式论文”相关范文大全或资料大全,欢迎大家分享。
利用行列式分解因式
数学系数学与应用数学专业09级本科毕业论文(设计)
用行列式分解因式的几种方法
摘 要 因式分解作为初等数学中最重要的恒等变形之一,被广泛的应用于初等数学的各个方面,而我们也学习过很多种因式分解的方法,例如:提公因式法、运用公式法、十字相乘法、凑数法等,它们都符合一定特征的多项式的分解。而行列式是解决高等代数问题的重要工具之一,本文就通过各种典型例子,用高等数学工具行列式来解决初等代数中的一些因式分解问题。 关键词 因式分解 行列式 多项式
1. 引 言
因式分解(factorization),是指把一个多项式化为几个最简整式的形式,也可以称为分解因式。它是初等数学中的重点,也是一个难点,但是它也是初等数学中最重要的恒等变形之一,而被广泛引用于初等数学解高次方程、求根、作图等各个方面,是我们解决初等数学问题的有力工具之一。但因式分解方法灵活、技巧性强,常用的方法就有提公因式法、运用公式法、凑数法、十字相乘法、待定系数法等好几种方法,它们都各自适用于一些符合各自特点的多项式。
行列式在数学中,是由解线性方程组产生的一种算式,它无论在线性代数、多项式理论,还是在微积分学中(比如在换元积分法中),行列式作为基本的数学工
行列式 -
第一章 行列式
行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。
§1.1 n阶行列式定义和性质
1.二阶行列式
定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号)
a11a21a12?a11a22?a12a21 a22称为二阶行列式,行列式中每一个数称为行列式的元素,数aij称为行列式的元素,它的第一个下标i称为行标,表明该元素位于第i行,第二个下标j称为列标, 表明该元素位于第
2j列.位于第i行第j列的元素称为行列式的(i,j)元。2阶行列式由2个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!?2项,且正负项的各数相同。
应用:解线性方程
例1:二阶线性方程组
?a11x1?a12x2?b1??a21x1?a22x2?b2 且a11a22?a12a21?0. 解:D?
a11a21a11a12a22b1D1,D?a11a22?a12a21,D1??a11b2?b1a21
x2?D2. Db1b2a12a22?b1a22?a12b2,
D2
行列式的计算毕业论文
行列式的计算方法
数学与信息科学学院 数学与应用数学专业
摘要:行列式是高等代数的一个基本概念。求解行列式是在高等代数的学习中经常遇到的基本问题。本文主要介绍了求行列式值的常用方法和一些特殊的行列式求值方法。如化三角形法、降阶法、升阶法、归纳发、范德蒙行列式等十多种方法。并对相应例题进行了分析和归纳,总结与每种方法相适应的行列式的特征。 关键词:行列式的定义 行列式的性质 计算方法
1
1 行列式的基本理论
(1)行列式的定义
a11a21行列式的定义:n阶行列式用符号Dn??an1a12?a1na22?a2n表示,它代表n!项的代数
??an2?ann和,这些项是一切可能的取自于Dn中不同行不同列的n个元素的乘积a1j1a2j2?anjn,项,a1j1a2j2?anjn的符号为(?1)?(j1j2?jn),即当j1j2?jn为偶(奇)排列时该项的符号为正(负)也就是说
Dn?j1j2?jn?(?1)?(j1j2?jn)a1j1a2j2?anjn这里j1j2?jn表示对所有n阶排列求和。
?(2) 行列式的性质
首先我们应该熟练掌握并会运用行列式的以下性质: 性质1:行
行列式计算方法论文
本科生毕业论文(设计)
题目: 行列式计算及其应用研究
系 部 数学系 学科门类 理学 专 业 数学与应用数学 学 号 0707140157 姓 名 张大儒 指导教师 王吟
2011年 5 月 15 日
合肥师范学院2011届本科生毕业论文(设计)
行列式计算及其应用研究
摘 要
行列式是高等代数课程里基本而重要的内容之一,在数学和现实生活中有着广泛的应用,懂得如何计算行列式显得尤为重要.本文阐述行列式的定义及基本性质,介绍了利用行列式的性质计算、化三角形法、代数余子式法、加边法(升阶法)、范德蒙得行列式法等5种基本计算方法和数学归纳法、递推法、利用矩阵特征值计算、拆项法、因式分解法等5种特殊计算方法.本文也介绍了行列式在解析几何、代数中的理论应用和在工程建设、经济管理中的实践应用.这些行列式的计算方法及其应用可以提高我们对行列式的认识,有利于把行列式的研究推向深入.
关键词:行列式;因式分解;化三角形法;解析几何
I
合肥师范学院
线性代数 - 特殊行列式及行列式计算方法总结
特殊行列式及行列式计算方法总结
一、 几类特殊行列式
1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式
a11a21anna12a220n(n?1)2a1n00000?0an1an100an?1,2an20a2,n?1a1na2n?000an10a2,n?100a1n00 0an?1,n?1an?1,nan,n?1ann?(?1)a1na2,n?13. 分块行列式(教材P14例10)
一般化结果:
An0m?n0n?mBmCn?mBmAnCm?n??AnCm?nAn0n?mBm?An?Bm
Cn?mBm0m?n?(?1)mnAn?Bm
4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!
以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算
二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】
1) 利用行列式定义直接计算特殊行列式;
2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;
3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算
——适用于行列式的某一行或某一列中有很多零元素,并
线性代数 - 特殊行列式及行列式计算方法总结
特殊行列式及行列式计算方法总结
一、 几类特殊行列式
1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式
a11a21?ann?(?1)a12?a1na22??0n(n?1)20000?an2????0a2,n?1?an,n?1a1na2n?an?1,nann?000??000a1n00 0?0???00an10?a2,n?1an?1,2?an?1,n?1an1?a1na2,n?1?an13. 分块行列式(教材P14例10)
一般化结果:
An0m?n0n?mBmAnCm?nCn?mBm??AnCm?nAn0m?n0n?mBm?An?Bm
Cn?mBm?(?1)mnAn?Bm
4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!
以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算
二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】
1) 利用行列式定义直接计算特殊行列式;
2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;
3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算
——适用于
行列式的计算
行列式的计算方法
摘要:行列式计算的技巧性很强.理论上,任何一个行列式都可以按照定义进行计算,但是直接按照定义计算而不借助于计算机有时是不可能的.本文在总结已有常规行列式计算方法的基础上,对行列式的计算方法和一些技巧进行了更深入的探讨.总结出“定义法”、“化三角形法”、“滚动消去法”、“拆分法”、“加边法”、“归纳法”、“降级法”、“特征值法”等十几种计算技巧和途径. 关键词: 行列式 计算方法
行列式是研究某些数的“有规”乘积的代数和的性质及其计算方法.它起源于解线性方程, 以后逐步地应用到数学的其它领域.行列式的计算通常要根据行列式的具体特点,采用相应的计算方法. 这里介绍几种常见的,也是行之有效的计算方法. 1.对角线法则
对角线法则是行列式计算方法中最为简单的一种,记忆起来很方便,但它只适用于二阶和三阶行列式,四阶及以上的行列式就不能采用此方法. 2.定义法
根据行列式定义可知,如果所求的行列式中含的非零元素特别少(一般不多于2n个) ,可以直接利用行列式的定义求解,或者行列式的阶数比较低(一般是2阶或者3阶) .如果对于一些行列式的零元素(若有)分布比较有规律,如上(下) 三角形行列式
行列式发展历史
行列式发展历史
我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。
行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。
1693年4月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。
1750 年,瑞士数学家克莱姆 (G.Cramer,1704~1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖 (E.Bezout,1730~1783) 将确定行列式每一项符号的方法
行列式习题答案
线性代数练习题 第一章 行 列 式
系 专业 班 姓名 学号 第一节 n 阶 行 列 式
一.选择题
121.若行列式153?2 = 0,则x? [ C ] 25x(A)2 (B)?2 (C)3 (D)?3
?x1?2x2?32.线性方程组?,则方程组的解(x1,x2)= [ C ]
3x?7x?42?1(A)(13,5) (B)(?13,5) (C)(13,?5) (D)(?13,?5)
1x3.方程12x24?0根的个数是 [ C ] 913(A)0 (B)1 (C)2 (D)3
4.下列构成六阶行列式
线性代数 行列式答案
厦门理工
线性代数练习题 第一章 行 列 式
系 专业 班 姓名 学号 第一节 二阶与三阶行列式 第三节 n阶行列式的定义
一.选择题
121.若行列式15x3??2 = 0,则x? [ C ]
25(A)2 (B)?2 (C)3 (D)?3
??x1?2x2?32.线性方程组?,则方程组的解(x1,x2)= [ C ]
3x?7x?4?2?1(A)(13,5) (B)(?13,5) (C)(13,?5) (D)(?13,?5)
1x3.方程12x24?0根的个数是 [ C ] 913(A)0 (B)1 (C)2 (D)3
4.下列构成六阶