有理数的加法简便运算法则

“有理数的加法简便运算法则”相关的资料有哪些?“有理数的加法简便运算法则”相关的范文有哪些?怎么写?下面是小编为您精心整理的“有理数的加法简便运算法则”相关范文大全或资料大全,欢迎大家分享。

有理数加减混合运算法则

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

家笛卡尔在他的《几何学》中,第一次使用“”

学中用“∽”表示相似,用“≌”表示全等.

二、有理数的加法运算

1.有理数的加法法则

()同号两数相加,取相同的符号,并把绝对值相加.

()绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.

()互为相反数的两个数相加得.

()一个数同相加,仍得这个数.

2.有理数加法的运算步骤

有理数加法的运算步骤:“先定符号,再算绝对值”.

①确定和的符号;

②求和的绝对值,即确定是两个加数的绝对值的和或差.

【方法】口诀:“一定二求”

3.有理数的加法运算律

()加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变.

()加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变.

4.有理数加法的运算技巧

有理数加法的运算技巧:“凑零凑整,同号集中,同分母结合,带分数拆开”.

()凑零凑整:互为相反数的两个数相结合;和为整数的加数相结合;

()同号集中:把符号相同的加数相结合;

()同分母结合:把分母相同或便于通分的加数相结合;

()带分数拆开:将带分数的整数部分和分数部分拆开,整数与分数分别相结合.

【注意】带分数拆开后的两部分要保持原来分数的符号.计算:

1.(1)

(2)

有理数的加法及简便运算

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

.WORD.格式.

有理数的加法和简便运算

一.解答题(共30小题) 1.(2015秋?富顺县月考)(﹣15)+(+9) 2.(2015秋?太和县月考)计算: (1)(﹣25)+(﹣35); (2)(﹣12)+(+3); (3)(+8)+(﹣7); (4)0+(﹣7). 3.(2014秋?南康市校级期中)计算:

4.(2014秋?北流市期中)利用适当的方法计算:﹣4+17+(﹣36)+73. 5.(2014秋?黄冈校级月考)直接写出计算结果: (1)(﹣12)+13= (2)﹣3+(﹣2)= (3)+(﹣1)= (4)(﹣3.5)+2= (5)(6)

= =

6.(2014秋?河源校级月考)计算:3+(﹣2)+5+(﹣8) 7.(2014秋?长沙校级月考)计算题

(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1) (2)﹣0.5+(﹣3)+(﹣2.75)+(+7) (3)1+(﹣1)++(﹣1)+(﹣3) (4)+(﹣)+(﹣)+(﹣)+(﹣) (5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5 (

对数的运算法则

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

对数的运算法则

市级一等奖 旬阳中学 谢道仁

一、概述

对数的运算法则是北师大版高中《数学》(必修1)第三章第4.1节第(二)部分。本课需要学生掌握对数的运算法则,能初步运用对数的性质和运算法则解题;通过对法则的探究与推导,培养学生从特殊到一般的概括,归纳总结思想,使学生自主、探究地开展学习活动。

二、学习目标分析 1、知识与技能

掌握对数的运算法则,能初步运用对数的性质和运算法则解题; 2、过程与方法

通过对法则的探究与推导,培养学生从特殊到一般的概括,归纳总结思想,使学生自主、探究地开展学习活动 3、情感态度价值观

通过了解我国古代在对数研究方面的成就,激发热爱祖国,热爱

祖国悠久文化的思想感情。 [学习重点和难点]

对数的运算法则的推导和应用是本节课的重点,,法则的探究与证明是本节课的难点. 三、教学策略的选择与设计

学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到"细观察、多动手、勤思考,善总结".通过观察、猜想、探究、

推理、模仿、体验,质疑等方法完成本节知识的学习。本节课采用“问题导学,自主探索,归纳总结” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。 四、资源

(1)教师自制的多

专题学习--有理数的简便运算

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

专题学习——有理数的简便运算

班级__________ 姓名_________________

【学习目标】

1、能分析题目特征,灵活运用运算律简化计算,提高运算的准确性与速度。 2、经历运用运算律简化计算的过程,体会运用运算律的优越性。 【学习重难点】

1、重点:有理数的简便运算。

2、难点:有理数运算的准确性与速度。 【导学过程】

一、做

计算下列各题

⑴?4.2?5.7?5.8?4.3 ⑵

⑶(?4)?(?47)?(?)?(?

⑸(?)?3.2?(?)?4.2?(?)?2.6

12411?(?)??(?)?(?) 23523141111) ⑷(?12)?(???) 47236121212二、忆

有理数的运算律

1、加法交换律:a?b?_________. 2、加法结合律:(a?b)?c?____________. 3、乘法交换律:ab?_____. 4、乘法结合律:(ab)c?_________. 5、乘法分配律:a(b?c)?_________; 分配律逆用:ab?ac?__________.

三、议

计算下列各题 ⑴(?3)?2

专题学习--有理数的简便运算

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

专题学习——有理数的简便运算

班级__________ 姓名_________________

【学习目标】

1、能分析题目特征,灵活运用运算律简化计算,提高运算的准确性与速度。 2、经历运用运算律简化计算的过程,体会运用运算律的优越性。 【学习重难点】

1、重点:有理数的简便运算。

2、难点:有理数运算的准确性与速度。 【导学过程】

一、做

计算下列各题

⑴?4.2?5.7?5.8?4.3 ⑵

⑶(?4)?(?47)?(?)?(?

⑸(?)?3.2?(?)?4.2?(?)?2.6

12411?(?)??(?)?(?) 23523141111) ⑷(?12)?(???) 47236121212二、忆

有理数的运算律

1、加法交换律:a?b?_________. 2、加法结合律:(a?b)?c?____________. 3、乘法交换律:ab?_____. 4、乘法结合律:(ab)c?_________. 5、乘法分配律:a(b?c)?_________; 分配律逆用:ab?ac?__________.

三、议

计算下列各题 ⑴(?3)?2

有理数2 - -有理数运算

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第3——4课时 有理数的运算

一、知识梳理

有理数的加、减法 1.有理数加、减法的定义

(1)把两个数合成一个有理数的运算,叫做有理数的加法。

(2)已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。 2.有理数加、减法法则(重点)

(1)同号两数相加,取相同的符号,并把绝对值相加

(同号相加,符号不变,绝对值相加)

(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。(异号相加,符号同大,绝对值相减)

(3)互为相反数的两数相加得零 (4)一个数同零相加,仍得这个数 (5)减去一个数,等于加上这个数的相反数 3.有理数加法的运算律(难点)

加法交换律:两个数相加,交换加数的位置,和不变。即a?b?b?a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和 不变。即(a?b)?c?a?(b?c) 4.有理数加减混合运算的方法和步骤(难点)

第一步:运用减法法则将有理数混合运算中的减法转化为加法。 第二步:运用加法法则、加法交换律、加法结合律进行简便运算 有理数的乘、除法

1.有理数的乘、除法法则(重点)

(1)两数相乘,同号得正,异号得负,并把绝对值相乘

幂的运算法则灵活应用

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

幂的运算法则灵活应用

一.巧计算:

1.(x2)4 x2 (x2)3 (x4)2 ( x) ( x)3 ( x2)2

2.23

42

83

3.( 2177

378

3

) ( 7

)

3

3

4. ( 9)3 2 1

3 3

5.( 2

2011

×(1.5)2012×(-1)2011

3)

6.(3a2)4( a3)3-(-a)( a4)4 (-2a4)2(- a)3( a2)3

7.2003 20052005 2005 20032002

8.1.345 0.345 2.69 1.3453

1.345 0.3452

二.巧比较大小: 1.比较2100

与375

的大小.

2.比较3555

,4

444

,5

333

的大小.

3.已知:a、b、c都是正数,且a2

2,b3

3,

c5 5,试比较a、b、c的大小.

4.求满足n200

5300的最大整数n.

5.证明:32004

42004 52004

6.若x 123456789 123456786,

y 123456788 123456787,试比较x与y的大

小.

三.待定系数法的应用

1. 如果2 8n

16n

222

,求n的值.

82. 已知2

xx 1

16 22x 3,求x. 2.a

n 1

a

幂的运算法则灵活应用

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

幂的运算法则灵活应用

一.巧计算:

1.(x2)4 x2 (x2)3 (x4)2 ( x) ( x)3 ( x2)2

2.23

42

83

3.( 2177

378

3

) ( 7

)

3

3

4. ( 9)3 2 1

3 3

5.( 2

2011

×(1.5)2012×(-1)2011

3)

6.(3a2)4( a3)3-(-a)( a4)4 (-2a4)2(- a)3( a2)3

7.2003 20052005 2005 20032002

8.1.345 0.345 2.69 1.3453

1.345 0.3452

二.巧比较大小: 1.比较2100

与375

的大小.

2.比较3555

,4

444

,5

333

的大小.

3.已知:a、b、c都是正数,且a2

2,b3

3,

c5 5,试比较a、b、c的大小.

4.求满足n200

5300的最大整数n.

5.证明:32004

42004 52004

6.若x 123456789 123456786,

y 123456788 123456787,试比较x与y的大

小.

三.待定系数法的应用

1. 如果2 8n

16n

222

,求n的值.

82. 已知2

xx 1

16 22x 3,求x. 2.a

n 1

a

极限的性质和运算法则

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

兰州外语职业学院教案专用纸

专业: 科目:《经济数学基础》 第 周第 学时教案 授课教师:贾其鑫

29

1.4 极限的性质与运算法则

教学目标: 1.掌握极限的性质及四则运算法则。

2.会应用极限的性质及运算法则求解极限

教学重点:极限的性质及四则运算法则;

教学难点:几种极限的种类及求解方法的归纳

教学课时:2学时

教学方法:讲授法、归纳法、练习法

教学过程:

1.4.1 极限的性质

性质1.5(唯一性) 若极限)(lim x f 存在,则极限值唯一. 性质1.6(有界性) 若极限)(lim 0

x f x x →存在,则函数)(x f 在0x 的某个空心邻域内有界.

性质1.7(保号性) 若A x f x x =→)(lim 0

,且0>A (或0<A ),

则在0x 的某空心领域内恒有0)(>x f (或0)(<x f ).

若A x f x x =→)(lim 0

,且在0x 的某空心邻域内恒有0)(≥x f (或

0)(≤x f ),则0≥A (或0≤A ). 1.4.2 极限的四则运算法则

定理1.3 若A x u =)(lim ,B x v =)(lim ,则

2.3极限运算法则、极限存在的准则

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第三节

极限运算法则

一、极限四则运算法则定理1. 若limf (x)=A, limg(x)=B存在, 则

(1) lim[f (x) g(x)] = limf (x) limg(x) = A B(2) lim[f (x) g(x)] = limf (x) · limg(x) = A · B

f ( x) lim f ( x) A (3) 若B 0, 则 lim . g ( x) lim g ( x) B

推论: 设limf (x)存在. C为常数, n为自然数. 则

(1) lim[Cf (x)] = C limf (x) (2) lim[f (x)]n = [limf (x)]n

2x x 4 例1. 求 lim x 2 x 63 2

更一般的, 有结论: 若f (x)为初等函数, 且f (x)在点 x0处有定义. 则 lim f ( x ) f ( x0 )x x0

xn 1 例2. 求 lim m , 其中m, n为自然数. x 1 x 1

解: 注意到公式

x n 1 ( x 1)( x n 1 x n 2 1)有( x 1)( x n 1 1