小学奥数比和比例知识点
“小学奥数比和比例知识点”相关的资料有哪些?“小学奥数比和比例知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数比和比例知识点”相关范文大全或资料大全,欢迎大家分享。
比和比例奥数讲义
比和比例
在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断。
成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例. 下面我们从最基本的判断两种量是否成比例的例题开始. 例1 下列各题中的两种量是否成比例?成什么比例? ①速度一定,路程与时间. ②路程一定,速度与时间.
③路程一定,已走的路程与未走的路程.
④总时间一定,要制造的零件总数和制造每个零件所用的时间. ⑤总产量一定,亩产量和播种面积. ⑥整除情况下被除数一定,除数和商. ⑦同时同地,竿高和影长.
⑧半径一定,圆心角的度数和扇形面积. ⑨两个齿轮啮合转动时转速和齿数.
1
⑩圆的半径和面积.
(11)长方体体积一定,底面积和高. (12)正方形的边长和它
小学数学奥数知识点归纳
小学数学奥数知识总结归纳
1.和差倍问题
和差问题 和倍问题 差倍问题
已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数
公式适用范围 已知两个数的和,差,倍数关系
公式 ①(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数
②(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数 和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数 关键问题 求出同一条件下的: 和与差 和与倍数 差与倍数
2.年龄问题的三个基本特征:①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的;
3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。 关键问题:根据题目中的条件确定并求出单一量;
4.植树问题
基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有
小升初奥数知识点总结
小升初奥数知识点总结,汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等
小升初奥数知识点总结(共计33套)
小升初奥数知识点总结,汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等
小升初奥数知识点总结
2
小升初奥数知识点(比和比例) 小升初奥数知识点(综合行程问题) 小升初奥数知识点(工程问题) 小升初奥数知识点(逻辑推理问题) 小升初奥数知识点(几何面积) 小升初奥数知识点(时钟问题—快慢表问题) 小升初奥数知识点(时钟问题—钟面追及) 小升初奥数知识点(浓度与配比) 小升初奥数知识点(经济问题) 小升初奥数知识点(简单方程) 小升初奥数知识点(不定方程) 小升初奥数知识点(循环小数)
小升初奥数知识点总结,汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等
小升初奥数知识点(年龄问题的三大特征)
年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
解题规律:抓住年龄
小升初奥数知识点总结
小升初奥数知识点总结,汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等
小升初奥数知识点总结(共计33套)
小升初奥数知识点总结,汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等
小升初奥数知识点总结
2
小升初奥数知识点(比和比例) 小升初奥数知识点(综合行程问题) 小升初奥数知识点(工程问题) 小升初奥数知识点(逻辑推理问题) 小升初奥数知识点(几何面积) 小升初奥数知识点(时钟问题—快慢表问题) 小升初奥数知识点(时钟问题—钟面追及) 小升初奥数知识点(浓度与配比) 小升初奥数知识点(经济问题) 小升初奥数知识点(简单方程) 小升初奥数知识点(不定方程) 小升初奥数知识点(循环小数)
小升初奥数知识点总结,汇总小学阶段奥数知识点,包括小升初中常考的题目类型等。有工程问题、行程问题、质数合数问题等等
小升初奥数知识点(年龄问题的三大特征)
年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
解题规律:抓住年龄
六年级奥数比和比例
第二讲 比和比例
教学目标:
1、比例的基本性质
2、熟练掌握比例式的恒等变形及连比问题
3、能够进行各种条件下比例的转化,有目的的转化; 4、单位“1”变化的比例问题 5、方程解比例应用题 知识点拨:
比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内
容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:
一、比和比例的性质
性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d; 性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;
性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数) 性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积) 正比例:如果a÷b=k(k为常数),则称a、b成正比; 反比例:如果a×b=k(k为常数),则称a、b成反比. 二、主要比例转化实例
xaabybxy ① ? ? ?; ?; ?;
ybxyxaabxamxaxma?; ?② ? ? (其中m?0);
ybmybymbxaxax?ya?bx?ya?b??③ ? ? ; ; ; ?ybx?ya?b
小升初必备奥数知识点归纳
称球问题
[专题介绍]
称球问题是一类传统的趣味数学问题,它锻炼着一代又一代人的智力,历久不衰。下面几道称球趣题,请你先仔细考虑一番,然后再阅读解答,想来你一定会有所收获。
[经典例题]
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
例2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
奥数知识点汇总初一
奥数知识点汇总(初一)
第一章 整数
一、整数的几种表示方法:
选择适当的方法表示一个整数,是解决整数问题的基本方法之一。
它是解决整数问题的前提。1、整数的多项式表示法:
任何一个十进制的正整数N 都可表示为:
12121010101010n n n n N a a a a a --=?+?++?+?+,
这里n a 、1n a -、……2a 、1a 、0a 各取于0——9这十个数字中的任何一个。如果N 是一个
n+1位正整数,则n a ≠0。为了方便,也可将N 简记作110N n n a a a a =-——————————————
。 这种表示法称为整数的多项式表示法。整数最左边的一位数字n a 叫做整数N 的首位数字,最右边的一位数字0a 叫做整数N 的末位数字。
2、整数的质因数连乘积表示法:
(1)算术基本定理——每一个大于1的整数都能分解成质因数的乘积的形式,并且如果把质因数按照由小到大的顺序排在一起(相同因数的积写成幂的形式),那么这种分解方法是唯一的。
这就是说,任何一个整数N (N >1),都能唯一地表示成下面的形式:
其中1α,2α,……n α为自然数,12,,,n p p p 为质数,并且1p <2p <……<n p 。这种表示法称为整数的质因
小学奥数知识点趣味学习——数字游戏问题
小学奥数知识点趣味学习——数字游戏问题
数字游戏问题
是数学游戏中的一类。
它要求从数字以及数字间的运算中发现规律,然后按照这个规律去填数或填写运算符号。解决这一类问题的关键是寻找规律、发现规律。
例题与方法指导
例1:
在□中填入适当的数。
1 9
2 8
3 7
4 □
分析:
题中共有8个数,前7个已经知道。最后一个需要填写。
8个数中1+9=10,2+8=10,3+7=10,
所以最后两个数是4+□=10。
这样,□里应填6。
解:1 9 2 8 3 7 4
例2 :
在( )里填数。
2 0 2 2 4 6 10( )
分析:观察发现2+0=2,0+2=2,2+2=4,2+4=6,4+6=10.即前两个数相加的和是后面的数.这样最后一个数应是6+10=16。
( )里应填16。
解:2 0 2 2 4 6 10 (16)
例3:
在空格中填入合格的数。
分析:数字分成三组,
前二组中的三个数字的和是20∶7+12+1=20,8+9+3=20,
所以第三组中应是□+2+5=20,空格中的数是13。
解:
例4:在空格中填入合适的数。
分析1 九个数分成三组,第一组中有8+18=2×13,即第一个数与第三个数的和是中间那个数的二倍,同样第三组中16+30=2×23.所以中间一组2×□=12+24
20181118小学奥数练习卷(知识点:和倍问题)含答案解析
小学奥数练习卷(知识点:和倍问题)
题号 得分 注意事项:
一 二 三 总分 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
评卷人 得 分 一.选择题(共2小题)
1.新生入校后,合唱队、田径队和舞蹈队共招收学员100人,如果合唱队招收的人数比田径队多一倍,舞蹈队比合唱队多10人,那么舞蹈队招收( )人.(注:每人限加入一个队) A.30
B.42
C.46
D.52
2.长方形的周长是48厘米,已知长是宽的2倍,长方形的长是( ) A.8厘米
B.16厘米
第Ⅱ卷(非选择题)
评卷人 得 分 C.24厘米
二.填空题(共39小题)
3.有一个分数,分子与分母之和是100,如果分子加23,分母加32,新的分数约分后是,那么原来的分数是 .
4.甲乙两个数的和是888888,甲数万位与十位上的数字都是2,乙数万位与十位上的数字都是6.如果甲数与乙数万位上的数字与十位上的数字都换成零,那么甲数是乙数的3倍.则甲数是 ,乙数是 .
5.盒子里有红球和白球若干,若每次从里面拿出1个红球和1个白球,那么当拿到没有红球时,还剩下白球
小学奥数知识点梳理1——数论教学提纲
此文档仅供收集于网络,如有侵权请联系网站删除
数论:1、奇偶;
2、整除;
3、余数;
4、质数合数‘
5、约数倍数;
6平方;
7、进制;
8、位值。
一、奇偶:
一个整数或为奇数,或为偶数,二者必居其一。
奇偶数有如下运算性质:
(1)奇数土奇数=偶数偶数土偶数= 偶数
奇数土偶数=奇数偶数土奇数二奇数
(2)奇数个奇数的和(或差)为奇数;偶数个奇数的和(或差)为偶数,任意多个偶数的和(或差)总是偶数。
(3)奇数x奇数二奇数偶数x偶数二偶数
奇数X偶数二偶数
(4)若干个整数相乘,其中有一个因数是偶数,则积是偶数;如果所有的因数都是奇数,则积是奇数。
(5)偶数的平方能被4整队,奇数的平方被4除余1。
上面几条规律可以概括成一条:几个整数相加减,运算结果的奇偶性由算式中奇数的个数所确定;如果算式中共有偶数(注意:0也是偶数)个奇数,那么结果一定是偶数;如果算式中共有奇数个奇数,那么运算结果一定是奇数。
二、整除:
掌握能被30以下质数整除的数的特征。
被2整除的数的特征为:它的个位数字之和可以被2整除.
被3 (9)整除的数的特征为:它的各位数字之和可以被 3 (9)整除。
被5整除的数的特征为:它的个位数字之和可以被5整除。
被11整除的数的特征是:它的奇位数字之和与偶位数字之和