电力生产问题数学建模论文
“电力生产问题数学建模论文”相关的资料有哪些?“电力生产问题数学建模论文”相关的范文有哪些?怎么写?下面是小编为您精心整理的“电力生产问题数学建模论文”相关范文大全或资料大全,欢迎大家分享。
电力生产问题数学建模论文
电力生产问题
摘要
本文针对发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启数量和运行功率,使得一天内总发电成本最小的问题,采用单目标非线性规划方法,建立所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定机组启停计划。
针对问题一:为了使一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1463625元。
针对问题二:根据题目要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段用电量的需求量进行相应的修改即可,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1885420元。
最后,对最终得到的结果进行分析,对模型的优缺点给出了客观的评价,就模型的不足之处提出了改进方法,并对模型的应用以及前景提出了自己见
电力调度数学建模论文
数学建模论文
院(部): 电信学院
专业班级: 电气13-1 学 号: 2013302591 学生姓名: 陈建东
2014 年 10 月 29 日
目录
摘要................................................................ 3 一、问题重述........................................................ 4 二、问题分析........................................................ 5 三、问题假设........................................................ 5 四、符号说明....................................................
数学建模—保姆问题论文
数学建模作业
目录
一、问题的提出 二、问题分析
三、模型假设与符号约定 四、模型的建立 五、模型的求解 六、结果检验 七、模型的优缺点 八、参考文献
一、问题的提出
1、基本情况
一家保姆服务公司专门向顾主提供保姆服务。根据统计,下年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日。公司新招聘的保姆必须经过5天的培训才能上岗。每个保姆每季度工作(新保姆包括培训)65天。保姆从该公司而不是从顾主那里得到报酬,每人每月
工资800元。春季开始时公司拥有120名保姆,在每个季度结束时,将有15%的保姆自动离职 2、需要解决的问题
(1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划;哪些季度的增加不影响招聘计划?可以增加多少?
(2)如果公司允许解雇保姆,请你为公司制定下一年的招聘计划。
二、问题分析
1、 对问题一的分析。设4个季度开始时公司的新招聘的保姆数量分别为x1,x2,x3,x4人,4个季度开始时保姆总数量分别为s1,s2,s3,s4人,以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和为最小)为目标,建立模型求解。
2、 对问题二的分析。设4个季度开始时公司新招聘的保姆数量分别为x1,x
数学建模论文(分配问题)
本文档由222工作室提供 如果你是信息学院的 更多相关建模论文 请与上午至本工作室来查询
公平席位的分配
系别:机电工程系 模具班 学号: 1号
摘要:
分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。分配问题涉及的内容十分广泛,例如:大到召开全国人民代表大会,小到某学校召开学生代表大会,均涉及到将代表名额分配到各个下属部门的问题。代表名额的分配(亦称为席位分配问题)是数学在人类政治生活中的一个重要应用,应归属于政治模型。而当代表的人数在总和没有发生变化的情况下,所占比例却发生了变化时,一个如何分配才能使分配公平的问题就摆在了我们的面前。因此,我们要通过建立数学模型来确定一种能够使分配公平的方法来分配
关键字: 理想化原则; 整数规划; 席位公平分配
问题的提出:
某学院有3个系共200名学生,其中甲系100人,乙系60人,丙系40人,现要选出20名学生代表组成学生会。
如果按学生人数的比例分配席位,那么甲乙丙系分别占10、6、4个席位,这当然没有什么问题(即公平)。
但是若按学生人数的比例分配的席位数不是整数,就会带来
数学建模 - - 生产规划问题
一、 问题的重述
某国政府要为其牛奶、奶油和奶酪等奶制品定价。所有这些产品都直接或间接的来自国家的原奶生产。原奶首先要分离成脂肪和奶粉两种组合,去掉生产出口产品和农场消费的产品后,余下的共有60万吨脂肪和70万吨奶粉,可用于生产牛奶、奶油和两种奶酪,供国内全年消费。其中,各种产品的百分比以及去年销售量和价格分别见表(表1、表2)
表一 产品\\成分 脂肪 奶粉 水 牛奶 奶油 奶酪1 奶酪2
表二 产品 牛奶 奶油 奶酪1 奶酪2 消费(千吨) 4820 320 210 70 价格(元/吨) 297 720 1050 815 1、价格的变化会影响消费需求。为表现这方面的规律,定义需求的价格伸缩性 E:
E=需求降低百分数/价格提高百分数;
各种产品的E值,可以据往年的价格和需求变化情况的统计数据,用数理统计方法求出。
2、两种奶酪的需求,随它们价格的相对变化,在某种程度上可以相互替代。表现这一规律要用需求关于价格的交叉伸缩性EAB其定义为:
EAB=A需求提高百分数/B价格提高百分数。
3、已知四种产品的E值分别为:0.4,2.7,1.1,0.4 以及EAB=0.1,EBA=0.4
4 80 35 25 9 2 30 40 87
机场选址问题数学建模论文
机场选址问题
摘 要
针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。
对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个城市是否建支线机场的yi以及第i个城市是否是以第j个支线机场为最近机场的x?i,j?。然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量x?i,j?,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。
对于问题2, 该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。
对于问题3, 我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均
电力生产问题数学模型
电力生产问题数学模型
摘要
本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。
因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。
解决问题(1)时,我们运用LINGO工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 型 号 时 段 时段1 0 0 ? 0 0 时段2 2 1750 ? 3 2166.6 时段3 0 750 ? 3 1800 时段4 2 1750 ? 3 3500 时段5 0 1000 ? 3 1800 时段6 1 1300 ? 3 1800 时段7 0 750 ? 3 0 总成本/元 型号1 ? 型号4 1439270 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的mj?Pij?Dj改为
mj?Pij?Dj?0.8。
电力生产问题数学模型
电力生产问题数学模型
摘要
本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。
因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。
解决问题(1)时,我们运用LINGO工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 型 号 时 段 时段1 0 0 ? 0 0 时段2 2 1750 ? 3 2166.6 时段3 0 750 ? 3 1800 时段4 2 1750 ? 3 3500 时段5 0 1000 ? 3 1800 时段6 1 1300 ? 3 1800 时段7 0 750 ? 3 0 总成本/元 型号1 ? 型号4 1439270 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的mj?Pij?Dj改为
mj?Pij?Dj?0.8。
学校火灾逃生问题 数学建模论文
《学校火灾逃生问题》数学建模论文作者: 光善军
《学校火灾逃生问题》数学
建模论文
作者: 光善军、刘一泽、李袭宝
摘 要
学校作为人员较为集中且火灾极易发生的场所,火灾中逃生能力的提高和有效的人员疏散方案的确立显得格外重要。本文首先通过分析学校教学楼人员疏散的特点以及影响人员疏散时间的各种因素建立数学模型,采用人流密度计算疏散时间的方法,并提出采用人流密度计算速度的方法和水平通道节点法来分析计算教学楼的人员疏散使用时间。从而得出了在人流密度较大的教学楼内计算火灾中人员疏散使用时间的方法,并且利用我们建立的数学模型从不同的角度提出教学楼人员紧急撤离的处理方法。 关键词:人流密度、疏散时间、水平通道节点
一、问题的提出与重申 1.1 问题的提出
学校是人员比较集中的地方,当发生火灾后,如何采取有效的途径缩短人员疏散时间使教学楼人员紧急撤离是我们需要思考的问题。现在考虑A小学的一座教学楼,一共五层,其中每层楼有四间教室,如图1所示:
图1 教学楼平面图
在图中, D为教室门的宽
数学建模论文--物流与选址问题
物流预选址问题 ........................................................................................................................ 2 摘要 .......................................................................................................... 错误!未定义书签。 一、问题重述 ............................................................................................................................ 2 二、 问题的分析 ...................................................................................................................... 3
2.1 问题一:分析确定合理