bcd码与十六进制的转换
“bcd码与十六进制的转换”相关的资料有哪些?“bcd码与十六进制的转换”相关的范文有哪些?怎么写?下面是小编为您精心整理的“bcd码与十六进制的转换”相关范文大全或资料大全,欢迎大家分享。
实验1 BCD码转换成十六进制码
实验1 BCD码转换成十六进制码 1. 实验目的
(1) 熟悉编码转换程序
(2) 掌握编写和运行子程序的技巧 2实验设备 计算机一台
硬件配置:pentium2及以上配置,内存为128MB,硬盘剩余空间100MB,配置有串口,并口,和USB口
操作系统:Windows98/2000/xp 应用软件:KeilC51 3实验内容
将片内RAM 20H单元中两位BCD码转换成相应的十六进制码,转换结果保存于22H单元 4实验原理提示
常用BCD码转十六进制码的方法为“乘十加数”法。例如,将BCD码10010010(表示十进制数92)转换成十六进制编码表示形式,算法为:YH=(09*0A+02)H =5CH。其中YH为转换后的十六进制数。再二进制运算中乘法可以用移位(左移)实现,*0A可以写成*08+*02,其中*08是将被乘数左移3为,*02是将被乘数左移1为。则(09*0A+02)
H=(09+08+09*02+02)D=(01001000+00010010+00000010)B=(01011100)B=5CH。
5.BCD码转换成十六进制码的实验程序流程图如图 6.实验参考程序 ORG 0000H LJMP MAIN
二进制,十进制,十六进制,ASCII,BCD码的转换,单片机
1.在片内RAM 30H单元有-个8位二进制数,将其转换成压缩BCD码,存于片内RAM 41H(高位)40H(低位)中。方法:2^8=256,所以8位二进制
A<=256,A/100商是百位数,存放到41h单元,余数再除以10,再得商是10位数,高低位互换,) ORG 0100H START:
MOV A,30H ;取来8位二进制数 MOV B,#100
DIV AB ;除以100
MOV 41H,A ;商是百位数,存放到41h单元
1010 (A) 41H 1111 (F) 46H ORG 1000 BTOASC: PUSH ACC PUSH PSW OV A , R0
ANL A , #0FH ;取四位二进制数
MOV R0 , A 暂存 CLR C
SUBB A , #0AH ;与10比较
MOV A , R0 ;恢复四位二进制数 DB ‘0123456789ABCDEF';定义数字对应的ASCII表
BINTOHEX:
MOV D
bcd码的转换
bcd码也叫8421码就是将十进制的数以8421的形式展开成二进制,大家知道十进制是0~9十个数组成,着十个数每个数都有自己的8421码: 0=0000 1=0001 2=0010 3=0011 4=0100 5=0101 6=0110 7=0111 8=1000
9=1001
举个例子:
321的8421码就是
3 2 1 0011 0010 0001
二进制编码的十进制数,简称BCD码(Binarycoded Decimal). 这种方法是用4位二进制码的组合代表十进制数的0,1,2,3,4,5,6 ,7,8,9 十个数符。4位二进制数码有16种组合,原则上可任选其中的10种作为代码,分别代表十进制中的0,1,2,3,4,5,6,7,8,9 这十个数符。最常用的BCD码称为8421BCD码,8.4.2.1 分别是4位二进数的位取值。 右图为十进制数和8421BCD编码的对应关系表:
1、BCD码与十进制数的转换
BCD码与十进制数的转换.关系直观,相互转换也很简单,将十进制数75.4转换为BCD码如:
75.4=(0111 (0101.0100
实验二二进制转换为BCD码
得分 教师签名 批改日期
深 圳 大 学 实 验 报 告
课程名称: 微机原理及应用 实验名称: 二进制到BCD转换 学院: 物理科学与技术学院 组号: 指导教师: 李雄军
报告人: 学号:
实验地点:科技楼302 实验时间:
实验报告提交时间:
教务处制
1、实验要求:
将AX中的一个二进制数(对应的十进制数范围是0-65535),转换成压缩性BCD码表示的十进制,并从屏幕输出转换结果。要求用减法实现,并比较与除法方法进行运行速度比较。
2、实验目的:
(1)进一步熟练掌握8086汇编语言编译调试工具和环境的操作; (2)掌握完整8086汇编的程序设计编写方法; (3)掌握简单的数值码制转换方法; (4)掌握键盘输出的DOS功能调用方法。
3、实验说明:
计算机中的数值有各种表达方式,这是计算机的基础。掌握各种数制、码制之间的转换是一种基本功;利用DOS功能调用
二进制、八进制、十进制与十六进制转换计算
二进制、八进制、十进制与十六进制 一、进制的概念 在计算机语言中常用的进制有二进制、八进制、十进制和十六进制,十进制是最主要的表达形式。 对于进制,有两个基本的概念:基数和运算规则。 基数:基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字。二进制是0和1;八进制是0-7;十进制是0-9;十六进制是0-9+A-F(大小写均可)。也可以这样简单记忆,假设是n进制的话,基数就是【0,n-1】的数字,基数的个数和进制值相同,二进制有两个基数,十进制有十个基数,依次类推。 运算规则:运算规则就是进位或错位规则。例如对于二进制来说,该规则是“满二进一,借一当二”;对于十进制来说,该规则是“满十进一,借一当十”。其他进制也是这样。 二、二、八、十、十六进制基数对照表 二进制Binary0000000100100011010001010110011110001001101010111100110111101111八进制Octal012345671011121314151617十进制Decimal0123456789101112131415十六进制Hex0123456789ABCDEF 三、二进制转化成其他进制 1.二进制(Binary
二进制、八进制、十进制与十六进制转换计算
二进制、八进制、十进制与十六进制 一、进制的概念 在计算机语言中常用的进制有二进制、八进制、十进制和十六进制,十进制是最主要的表达形式。 对于进制,有两个基本的概念:基数和运算规则。 基数:基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字。二进制是0和1;八进制是0-7;十进制是0-9;十六进制是0-9+A-F(大小写均可)。也可以这样简单记忆,假设是n进制的话,基数就是【0,n-1】的数字,基数的个数和进制值相同,二进制有两个基数,十进制有十个基数,依次类推。 运算规则:运算规则就是进位或错位规则。例如对于二进制来说,该规则是“满二进一,借一当二”;对于十进制来说,该规则是“满十进一,借一当十”。其他进制也是这样。 二、二、八、十、十六进制基数对照表 二进制Binary0000000100100011010001010110011110001001101010111100110111101111八进制Octal012345671011121314151617十进制Decimal0123456789101112131415十六进制Hex0123456789ABCDEF 三、二进制转化成其他进制 1.二进制(Binary
颜色十六进制的表示
色 LightPink Pink Crimson
英文代码 浅粉红 粉红 猩红
形像颜色
HEX 格式 #FFB6C1 #FFC0CB #DC143C #FFF0F5 #DB7093 #FF69B4 #FF1493 #C71585 #DA70D6 #D8BFD8 #DDA0DD #EE82EE #FF00FF #FF00FF #8B008B #800080 #BA55D3 #9400D3 #9932CC #4B0082 #8A2BE2 #9370DB #7B68EE #6A5ACD #483D8B
RGB 格式 255,182,193 255,192,203 220,20,60 255,240,245 219,112,147 255,105,180 255,20,147 199,21,133 218,112,214 216,191,216 221,160,221 238,130,238 255,0,255 255,0,255 139,0,139 128,0,128 186,85,211 148,0,211 153,50,204 75,0,130 138,43,226 147,112,219 123,104,238 106,90,205 72,61,1
十进制与二进制、八进制、十六进制之间相互转换的方法
笔算,各种进制 先转成十进制 然后转换成其他进制。这个方法可以完成任意进制的转换
首先说一下,如何将二进制 转成十进制一个二进制数,从最后一位开始算,依次列为第0、1、2...n位 如11010 从右开始数 分别为 010110 第0位1 第1位0 第2位1 第3位1 第4位二进制中的0不算,只看1出现在第几位,算出2的 第n次方,然后将他们全都加起来,其中的1出现在 第1位 第3位 第4位,最终答案就是:1乘二的1次方+1乘二的3次方+1乘二的4次方 =26八进制转换成十进制 是一样的道理,只是2的n次方换成了 八 的n次方 如八进制 1234 转成十进制4 第0位3 第1位2 第2位1 第3位4*八的0次 + 3*八的1次方 + 2*八的2次方 + 1*八的3次方= 2257十六进制转换成十进制 是一样的道理,只是八的n次方换成了 十六 的n次方特别注意的是,十六进制0到16标示为 0123456789ABCDEF 其中A=10 F=15 中间类推,不累述。如十六进制 A5B6 转成十进制6 第0位B 第1位5 第2位A 第4位计算:将字母转换成相应的数字即可 得出结果6*十六的0次方 + B*十六的1次方 + 5*十六的
二进制、八进制、十进制、十六进制之间转换(含小数部分)
二进制、八进制、十进制、十六进制之间转换(含小数部分)
二进制、八进制、十进制、十六进制之间转换
一、 十进制与二进制之间的转换
(1) 十进制转换为二进制,分为整数部分和小数部分 ① 整数部分
方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例:
例:将十进制的168转换为二进制
得出结果 将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000
二进制、八进制、十进制、十六进制之间转换(含小数部分)
(2) 小数部分
方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数
二进制、八进制、十进制、十六进制之间转换(含小数部分)
二进制、八进制、十进制、十六进制之间转换(含小数部分)
二进制、八进制、十进制、十六进制之间转换
一、 十进制与二进制之间的转换
(1) 十进制转换为二进制,分为整数部分和小数部分 ① 整数部分
方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例:
例:将十进制的168转换为二进制
得出结果 将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000
二进制、八进制、十进制、十六进制之间转换(含小数部分)
(2) 小数部分
方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数