单利复利计算方法对比
“单利复利计算方法对比”相关的资料有哪些?“单利复利计算方法对比”相关的范文有哪些?怎么写?下面是小编为您精心整理的“单利复利计算方法对比”相关范文大全或资料大全,欢迎大家分享。
单利复利计算方法
利息计算中有两种基本方法:单利(simple interest)与复利(compound interest)。
式中,C为利息额(I),P为本金(PV),r为利息率(i),n为借贷期限(期數),
S为本金和利息之和,简称本利和=未來价值(FV)。
《单利计算公式》
1:C利息总额 = P母金×r利率×n期数
更正版1:I利息总额 = PV(現在价值)母金×i利率×n期数
2:S本利和 = P母金×(1+r利率×n期数)
更正版2:FV(未來价值)本利和 = PV母金×(1 + i利率× n期数)
单利的特点,是对已过计息日而不提取的利息不计利息,
《复利计算公式》
1: S = P母金×(1+r利率)n次方
FV算法版 1:FV(未來价值) = PV 母金×(1+r利率)n次方
FV查表版 1:FV = PV × FVIF(i,n)(利率,期数)
PV算法版 1:PV = FV /(1+i)n次方 = FV × { 1/(1+i)n次方 }
PV查表版 1:PV = FV × PVIF(i,n)(利率,期数)
2: C利息額 = S本利和
单利、复利、年金计算练习
单利、复利、年金计算练习
1、单利的计算
例1: 某人持有一张带息票据,面额2000元,票面利率 5﹪,持票90天,问他可以得到多少利息? 解:I=2000× 5﹪ ×90∕360=25(元)
例2: 某人希望在5年后从银行取得本利和1000元, 用于支付一笔款项。若在利率为5﹪ ,在单利 方式计算下,此人现在需要存入银行多少钱? 解:P=1000×1∕(1+ 5﹪ ×5)=800(元)
例3: 某人将1000元存入银行,定期3年,年利率10﹪, 3年期满,按复利计算,问他可以从银行得到多少元? 解:F5 =1000× (1+ 10﹪ )=1000 ×(F∕P, 10﹪,3) =1000×1.331=1331(元)
例4: 某人有资金1000元,拟存入银行,在复利10﹪计息 的条件下,经过多少年可以使他的资金增加一倍? 解:2000 =1000×(1+ 10﹪ )= 1000× (F∕P, 10﹪,n) 2=(1+ 10﹪ )
查表可知:需要7年多的时间。
例5: (复利现值)某企业拟在5年
单利复利练习题
1.某企业持有一张带息商业汇票,面值1000,票面利率5%,期限90天,则到期利息与到期值分别为多少?
2.
某企业持有一张带息的商业汇票,面额为5000元,票面利率(年利
率)为6%,3个月到期,计算票据到期时可得到的利息额。
3.某企业将现金10000元存入银行,期限为5年,年利率为10%。计算该企业存款到期时将得到的本利和(按单利利息)。
4.某公司经研究决定向银行存入现金80000元,拟在8年后用于更新设备,银行存款年利率为8%,每年复利一次。
(1)计算该公司8年后能从银行取得多少钱用来更新设备;(2)计算该公司8年后能取得的利息。
5.某公司董事会经研究决定6年后用150000元购买一套设备,当前银行存款年利率为9%,每年复利一次。计算该公司为在6年后购买该套设备现在需要一次存入银行的款项。
6.某公司有一项基建工程,分5年投资,每年投入200000元,预计5年后竣工交付使用。该项目投资来源于银行借款,借款年利率为10%,计算该公司该投资项目建成时的投资总额。
7.某公司董事会经研究决定自今年起建立偿债基金,用以偿还第6年年初到期的1600000元债务,在今后5年中,每年年末向银行存入等额款项,银行存款年利率为8%,每年复利一次。计
精编复利及年金计算方法公式资料
复利终值与现值
由于利息的因素,货币是有时间价值的,从经济学的观点来看,即使不考虑通胀的因素,货币在不同时间的价值也是不一样的;今天的1万元,与一年后的1万元,其价值是不相等的。例如,今天的1万元存入银行,定期一年,年利10%,一年后银行付给本利共1.1万元,其中有0.1万元为利息,它就是货币的时间价值。货币的时间价值有两种表现形式。一是绝对数,即利息;一是相对数,即利率。
存放款开始的本金,又叫“现值”,如上例中的1万元就是现值;若干时间后的本金加利息,叫“本利和”,又叫“终值”,如上例的1.1万元就是终值。
利息又有单利、复利之分。单利的利息不转为本金;复利则是利息转为本金又参加计息,俗称“利滚利”。
设PV为本金(复利现值)i为利率n为时间(期数)S为本利和(复利终值)
则计算公式如下:
1.求复利终值
S=PV(1+i)^n(1)
2.求复利现值
PV=S/(1+i)^n(2)
显然,终值与现值互为倒数。
公式中的(1+i)^n 和1/(1+i)^n 又分别叫“复利终值系数”、“复利现值系数”。可分别用符号“S(n,i)”、“PV(n,i)”表示,这些系数既可以通过公式求得,也可以查表求得。
例1、本金3万元,年复利6%,期限3年,求到期的本利和(求复利终值
计算方法
清洁验证残留限度的计算
根据GMP实施指南和相关要求,我们控制原料药(乙酰螺旋霉素)残留限度的计算依据如下:
计算方法:10ppm法、日剂量的千分之一、下批批量的0.1%(基于低毒性原料的杂质限度标准)
1、10ppm法:乙酰螺旋霉素批量为260kg,因残留物浓度最高为10*10-6,即10mg/kg,则残留物总量最大为:260*10*10-6=2600mg。则设备内表面残留物允许的限度为:
2600g?1000?100cm2?10%(保险系数)?70%(取样回收率) 残留限量A? 289.7m?10000=20.31㎎/100㎝2
残留限度定为:20.31㎎/100㎝2/25ml=0.8124mg/ml
2、日剂量的千分之一:由于原料药生产清洁后用于生产药用辅料(醋酸钠),其为无活性物质,因此暂无法用此公式计算。
3、下批批量的0.1%(基于低毒性原料的杂质限度标准)
原料药(乙酰螺旋霉素)的最小批产量为260㎏,下批批量的0.1%,则乙酰螺旋霉素最大残留物为260g。
擦拭测试:擦拭面积以10㎝×10㎝的区域计 残留限量A?260g?1000?100cm2?10%(保险系数)?70%(取样回收率) 289.7m?10
架线计算方法
哈密南-郑州±800kV特高压直流输电线路工程 晋1标段施工项目部 1.放线牵张力计算
(1)模拟放线弧垂,选取控制档、放线模板K值。 (2)计算控制档水平张力: Tn? 式中:
w2 2KTn——控制档水平张力,t ;
w2——导线单位重量,t ; K——模板K值。 (3)计算张力机出口张力:
ε(εn0?1) T0?n[Tn?w2?h0]
0n0(ε?1)ε1 式中:
T0——张力机出口张力,t ;
n——放线段内滑车数;
n0——张力场与控制档间滑车数;
ε——滑车摩擦系数;
?h0——控制档与张力场累计高差,m,控高为“+”。
(4)计算初始牵引力:
ε(εn?1) p0?k0[NTε?w1?h] 0n(ε?1)n
架线计算方法
哈密南-郑州±800kV特高压直流输电线路工程 晋1标段施工项目部 1.放线牵张力计算
(1)模拟放线弧垂,选取控制档、放线模板K值。 (2)计算控制档水平张力: Tn? 式中:
w2 2KTn——控制档水平张力,t ;
w2——导线单位重量,t ; K——模板K值。 (3)计算张力机出口张力:
ε(εn0?1) T0?n[Tn?w2?h0]
0n0(ε?1)ε1 式中:
T0——张力机出口张力,t ;
n——放线段内滑车数;
n0——张力场与控制档间滑车数;
ε——滑车摩擦系数;
?h0——控制档与张力场累计高差,m,控高为“+”。
(4)计算初始牵引力:
ε(εn?1) p0?k0[NTε?w1?h] 0n(ε?1)n
《数值计算方法》
《数值计算方法》
邹昌文编
2009年10月
上机实验指导书
“数值计算方法”上机实验指导书
实验一 误差分析
实验1.1(病态问题)
实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式
p(x) (x 1)(x 2) (x 20) (x k)
k 120
(1.1)
显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动
p(x) x19 0
(1.2)
其中 是一个非常小的数。这相当于是对(1.1)中x19的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个MATLAB函数:“roots”和“poly”。
u roots(a)
其中若变量a存储n+1维的向量,则该函数的输出u为
泄露计算方法
重大事故后果分析方法:泄漏
事故后果分析是安全评价的一个重要组成部分,其目的在于定量地描述一个可能发生的重大事故对工厂、厂内职工、厂外居民,甚至对环境造成危害的严重程度。分析结果为企业或企业主管部门提供关于重大事故后果的信息,为企业决策者和设计者提供关于决策采取何种防护措施的信息,如防火系统、报警系统或减压系统等的信息,以达到减轻事故影响的目的。火灾、爆炸、中毒是常见的重大事故,可能造成严重的人员伤亡和巨大的财产损失,影响社会安定。世界银行国际信贷公司(IFC)编写的《工业污染事故评价技术手册》中提出的易燃、易爆、有毒物质的泄漏、扩散、火灾、爆炸、中毒等重大工业事故的事故模型和计算事故后果严重度的公式,主要用于工业污染事故的评价。该方法涉及内容,也可用于火灾、爆炸、毒物泄漏中毒等重大事故的事故危险、危害程度的评价。
由于设备损坏或操作失误引起泄漏从而大量释放易燃、易爆、有毒有害物质,可能会导致火灾、爆炸、中毒等重大事故发生。 1 泄漏情况
1.1 泄漏的主要设备
根据各种设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备分类,通常归纳为:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、
计算方法与软件
实验目的
作为实践性非常强的课程,安排上机实验的目的,不仅是为了验证教材和授课内容,更重要的是,要通过实验深入理解方法的设计原理与处理问题的技巧,培养自行处理常规数值计算问题的能力和综合运用知识分析、解决问题的能力。
1、通过上机实验加深课堂内容的理解。
数值分析的主要任务就是研究适合于在计算机上使用的数值计算方法及与此相关的理论。通过编程上机,就可以加深对方法运行过程的理解,同时在编程中领会和理解数值计算方法的计算要领和步骤,体会问题的条件和限制范围,理解一般问题和特殊问题的区别。
2、学会对数值计算结果的分析和处理。
数值分析实验不只是编写程序得到一个数值结果,我们应在掌握数值计算计算方法的基本原理和思想的同时,注意方法处理的技巧及其与计算机的密切结合,重视误差分析、收敛性及稳定性的讨论。此外,还要注意算法能否在计算机上实现,应避免因数值方法选用不当、程序设计不合理而导致超过计算机的存储能力,或导致计算结果精度不高等。
3、要能灵活掌握各种数值计算方法。
由于针对同一个问题可以选用不同的数值计算方法,我们要注意各种方法的使用条件。通过上机,比较各种方法间的异同及优缺点,以便更好的使用不同的方法来解决实际问题,使计算机成为我们最好的工具。