高中数学弧度制公式
“高中数学弧度制公式”相关的资料有哪些?“高中数学弧度制公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学弧度制公式”相关范文大全或资料大全,欢迎大家分享。
高中数学第5讲.弧度制的概念 (教案)
第五章5.2 弧度制
第5讲弧度制的概念
一、复习
在角度制下,一周是360度。也就是说,把一个圆平均分
割成360份,每一份所对的圆心角就是1度。把1度再细分
下去,还有分’和秒’’。其中,1度等于60分(1°=60
′),1分等于60秒。(1′=60″)
O
角度制使用60进制,在单位换算上存在很多不足。例
如:请计算23°35′+
31°40′的值。两角相加,先从最小级的单位开始算,发现35′+
40′=75′=1°15′,继续再加度单位,原式的值可以等于23°+ 31°+1°15 ′=55°15′
.度和分的换算是用60进制的。这样使计算十分麻烦。是否可以有其他角的单位,使角的运算可以更加方便简单呢?今天我们就来学习新的表示角的单位—
弧度制。先来看个定义,什么是1弧度呢?
二、新知识
1、定义
对于一个给定半径的圆,我们把等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad(弧度).这种以弧度为单位来度量角的单位制叫做弧度制。
从定义上看,似乎弧度的定义与半径有关系,那么对于一个给定的圆心角,弧度数与半径有关吗?我们在几何画板中做一组实验。
我们发现拖动点C
,改变半径时,圆心角的弧度并不会改变大小。只有拖动B点,改变圆心角的大小时,弧度值才会变化。因此,角的弧度
高中数学三角函数任意角和弧度制
高一数学辅导三角函数(一)
【任意角】
1、时间经过了6小时30分钟,则钟表的分针所转过的角的度数为 ,时针所转过的角的度数为 。
2、已知α=-18450
,在与α 终边相同的角中,最小的正角的度数为 ;最大的负角的度数为 。
3、若α 是第一象限角,则 α
2 终边所在的位置是 。
4、若α 是第一象限角,β 是第二象限角,试确定α+β
2终边所在的位置 。
5、已知集合A=﹛α︱α为小于900
的角﹜,B=﹛α︱α为第一象限的角﹜,则A∩B=( )
A. ﹛α︱α为锐角﹜ B. ﹛α︱α为小于900
的角﹜ C. ﹛α︱α为第一象限的角﹜ D.以上都不对
6、若α与β的终边互相垂直,则α-β= 。
7、已知角α,β的终边关于x+y=0对称,且α=-600
,则β= 。 8、已知角β的终边在直线??= 3??上。 (1)写出角β的集合S;
(2)写出S中适合不等式-3600<β<7
高中数学公式汇总
1. 2.3.4.集合
个.
,.
.
的子集个数共有
个;真子集有
个;非空子集有
个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式(2)顶点式(3)零点式4切线式:设为此式 6.解连不等式
常有以下转化形式
;
;当已知抛物线的顶点坐标
时,设为此式
时,设为此式
时,
;当已知抛物线与轴的交点坐标为
。当已知抛物线与直线
相切且切点的横坐标为
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值 二次函数具体如下: (1)当a>0时,若
,则
;
在闭区间
上的最值只能在
处及区间的两端点处取得,
,,.
(2)当a<0时,若,则,
若
9.一元二次方程
,则,
=0的实根分布
1
.
1方程2方程
在区间在区间
内有根的充要条件为内有根的充要条件为
或;
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。
的子区间
。
(3) 在给定区间
。
(4) 在给定区间
。
对于参数及函数若若函数11.真值表 p q 真 真 真 假 假 真 假 假
2
,,不同上含参数的不等式(为参
数)恒成立的充要条件是(2)在给定区间
上含参数的不等式(为参数)恒成立的充要条件是
的子区间上
《高中数学常用公式总结》
《高中数学常用公式总结》 1、元素与集合的关系 2 、集合
的子集个数共有
个;真子集有 个.
个;
非空子集有个;非空的真子集有
3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式 : 坐标
时,设为此式)
(当已知抛物线与轴的交
时,设为此式)
。(当已知抛物线与直
(当已知抛物线的顶点
(3) 零点式: 点坐标为 (4)切线式: 线
相切且切点的横坐标为 时,
设为此式)
4、 真值表: 同真且真,同假或假
5 、常见结论的否定形式;
6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)
充要条件: (1) 要条件;
(2)
且q ≠> p,则P是q的充分不必要条件;
,则P是q的必要不充分条
则P是q的充分条件,反之,q是p的必
(3) p ≠> p ,且 件;
(4)p ≠> p ,且
则P是q的既不充分又不必要条件。
7、 函数单调性:
增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在 若对任意的 则就叫
减函数:(1)、文字描述是:y随x的增大而减小。
高中数学公式汇总
皖西学院 计算机网络 程 坤
高中数学第一章-集合
榆林教学资源网 http://www.ylhxjx.com 考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件. 考试要求: 榆林教学资源网 http://www.ylhxjx.com
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑 知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A?A; ②空集是任何集合的子集,记为??A; ③空集是任何非空集合的真子集; 如果A?B,同时B?A,那么A = B. 如果A?B
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8
理科高中数学公式汇总
高中数学基础知识公式 第一章 集合与简易逻辑 1、 集合
(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。 集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。 (2)、集合的表示法:列举法()、描述法()、图示法();
(3)、集合的分类:有限集、无限集和空集(记作?,?是任何集合的子集,是任何非空集合的真子集);
(4)、元素a和集合A之间的关系:a∈A,或a?A;
(5)、常用数集:自然数集:N ;正整数集:N;整数集:Z ;整数:Z;有理数集:Q;实数集:R。 2、子集
(1)、定义:A中的任何元素都属于B,则A叫B的子集 ;记作:A?B, 注意:A?B时,A有两种情况:A=φ与A≠φ
(2)、性质:①、A?A,??A;②、若A?B,B?C,则A?C;③、若A?B,B?A则A=B ; 3、真子集
(1)、定义:A是B的子集 ,且B中至少有一个元素不属于A;记作:A?B; (2)、性质:①、A??,??A;②、若A?B,B?C,则A?C; 4、补集
①、定义:记作:CUA?{x|x?U,且x?A};
②、性质:A?CUA??,A?CUA?U,
高中数学常用公式及结论
高中数学
常用公式及结论 王新敞
高中数学常用公式及结论
1. 元素与集合的关系:x?A?x?CUA,x?CUA?x?A.??A?A?? 2.德摩根公式 :CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系:
A?B?A?B?A?A?B?B?CUB?CUA?A?CUB???CUA?B?R
4.元素个数关系:
card(A?B)?cardA?cardB?card(A?B) card(A?B?C)?cardA?cardB?cardC
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2?1个;非空子集有2?1个;非空的真子集有2?2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0);
(2)顶点式f(x)?a(x?h)2?k(a?0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3)零点式f(x)?a(x?x1)(x?x2)(a?0);(当已知抛物线与x轴的交点坐标为
nnnn(x1,0),(x2,0)时,
高中数学公式汇总- 副本
高中数学公式结论大全
1.
,
.
2..
3.
4.集合
个.
的子集个数共有 个;真子集有个;非空子集有个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式
;
(2)顶点式;当已知抛物线的顶点坐标时,设为此式
(3)零点式;当已知抛物线与轴的交点坐标为时,设为此式
4切线式:设为此式 6.解连不等式
。当已知抛物线与直线相切且切点的横坐标为时,
常有以下转化形式
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值
二次函数具体如下:
在闭区间上的最值只能在处及区间的两端点处取得,
(1)当a>0时,若,则;
,,.
(2)当a<0时,若,则,
若,则,.
9.一元二次方程=0的实根分布
1方程在区间内有根的充要条件为或;
2方程在区间内有根的充要条件为
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。 ,
,
不同上含参数的不等式
(为参
数)恒成立的充要条件是
(2)在给定区间
。
的子区间上含参数的不等式(为参数)恒成立的充要条件是
(3) 在给定区间
。
的子区间上含参数的不等式(为参数)的有解充要条件是
(4) 在给定区间
。
的子区间上含参数的不等式(