多元复合函数与隐函数的偏导数
“多元复合函数与隐函数的偏导数”相关的资料有哪些?“多元复合函数与隐函数的偏导数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“多元复合函数与隐函数的偏导数”相关范文大全或资料大全,欢迎大家分享。
多元隐函数的偏导数
Lihai--
2010.03.06 Math School, Sichuan University
大学数学Ⅱ: 微积分(2)
数学学院李海
Cell phone: 13550068363email: alihai@
2010-4-23Mathematics II: Calculus (2)
Lihai--2
2010.03.06 Math School, Sichuan University
由方程确定的函数
Lihai--2010.03.06 Math School, Sichuan University
由方程确定的函数关系
Example0: 很多联系两个变量的函数关系往往由二元方程来确定, 例如:
222x+(y-b)=r
表示一个圆, 当r=C时也可以解出函数关系,如:
在绿色区域:y=b±在红色区域:x= 又如: xy=C表示一对双曲线
.
方程参数的影响
Example0+: 方程参数的赋值范围, 往往影
响函数关系的成立区域. 如果方程为:
e
x
++
C=0 则当参数C<0时, 此方程决定一个实函数:
而当参数数. 若在复数域上建立函数关系C>0时, 此方程不能决定一个实函
, 不受限制
.
Lihai--2010.03.0
讨论多元函数连续、偏导数存在、可微之间的关系
讨论多元函数连续、偏导数存在、可微之间的关系
祁丽梅
赤峰学院数学与统计学院 ,赤峰 024000
摘要: 本文先是对二元函数连续性、偏导数存在及可微之间的关系就具体实例进行了讨论,然后推广到多元函数由此来总结有关多元函数微分学中关于上述三个概念之间的关系,并通过二元函数具体的实例详细加以证明。
关键词: 二元函数;多元函数;连续;偏导数;存在;可微
一、引言
多元函数微分学是数学学习中的重要内容,是微积分学在多元函数中的具体体现,多元函数的连续性,偏导数存在及可微性之间的关系是学生在数学学习中易发生的概念模糊和难以把握的重要知识点。尽管它与一元函数的微分学有许多共同点,但它们之间也同样有一些差异,这些差异是由“多元”这一特殊性引起的。
二、二元函数连续、偏导数存在、可微之间的关系
1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
可微的必要条件:
若二元函数在p0?x0,y0?可微,则二元函数z?f?x,y?在p0?x0,y0?存在两个偏导数,且全微分
dz?A?x?B?y中的A与B分别是A?fx??x0,y0?与B?fy??x0,y0?
其中?x,?y为变量x,y的改变量,则?x?dx,
5、复合函数微分法与隐函数微分法
复合函数微分法与隐函数微分法
一、复合函数微分法复习: 一元复合函数 y f (u), u ( x)
dy dy du 求导法则 dx du dx微分法则 dy f (u)du f (u) ( x)dx要求:熟练掌握多元复合函数求导的链式法则
1、复合函数的中间变量均为一元函数的情形 定理:若函数u=u(t),v=v(t)都在点t可导,函数z=f(u,v) 在点(u,v)处偏导数连续,则复合函数z=f(u(t),v(t)) 在点t可导,且有链式法则: z
dz z du z dv dt u dt v dt(1)z只有一个自变量 (2)z有两个中间变量 (3)两个中间变量u,v都只一个自变量
u t
v t
证明略
推广: 设z=f(u,v,w) ,u=u(t),v=v(t),w=w(t) ,
则z=f(u(t),v(t),w(t))对t的导数为
z u t v t w t
全 导 数 公 式
dz z du z dv z dw dt u dt v dt w dt
dz z du z dv dt u dt v dt
2、复合函数的中间变量均为多元函数的情
多元函数微分学--多元复合函数求导
第三节 多元复合函数微分法
第三节 复合函数的微分法一. 复合函数的微分法 dy dy du = 一元复合函数的微分法则--链导法:(1).z = f [ ( x),ψ ( x)]dx du dx
推广
定理1 设 u = (x) 和 v = ψ (x) 都在点x可导,而z=f(u,v)在对应点 (u,v)可微,则复合函数 z = f [ ( x),ψ ( x)] 在点x可导,且 全导数dz f du f dv = + dx u dx v dx
u z v x
(证明略) 注:1.上述定理可推广到所有的多元复合函数.
2. 因为多元复合函数类型复杂,所以不要死记公式,要学会用 复合关系图.
例如: z = f (u , v, w), u = ( x), v = ψ ( x), w = h( x)dz f du f dv f dw = + + dx u dx v dx w dx
z
u v w
x
u z v
x y
(2).z = f [ ( x, y ),ψ ( x, y )]
定理2 设 u = ( x, y ) 和 v = ψ ( x, y ) 都在点(x,y)可偏导,而z=f(u,v) 在对应点(u,
2-6隐函数的导数、参数方程函数的导数、相关变化率
中南大学,高等数学,微积分,课件
中南大学,高等数学,微积分,课件
一、隐函数的导数定义:由方程所确定的函数 y y( x )称为隐函数 .y f ( x ) 形式称为显函数F ( x, y) 0 y f (x)
.
隐函数的显化
问题:隐函数不易显化或不能显化如何求导?
隐函数求导法则:用复合函数求导法则直接对方程两边求导.
中南大学,高等数学,微积分,课件
例1 求由方程y 的导数
xy e ex
y
0 所确定的隐函数
dy dx
,
dy dxx 0
.
解
方程两边对
x 求导 ,x
y x
dy dx
ee
e yy
y
dy dx
0
解得 dy dx
dy dx
x
x eex
,
由原方程知
x 0, y 0,
x 0
yy x 0 y 0
x e
1.
中南大学,高等数学,微积分,课件
例2 设曲线 C 的方程为 x 3 y 3 3 xy , 求过 C 上3 3 点 ( , )的切线方程 2 2 线通过原点 .x 求导 ,3 x 3 y y 3 y 3 xy 2 2
, 并证明曲线
C 在该点的法
解
方程两边对
y
3 3 ( , ) 2 2
y x2
2
y x
(
3 3 , ) 2 2
1.
所求切线方程为 y 法线
分段函数与复合函数
分段函数
1.已知函数f(x)=??3x?2,x?1,?x?ax,x?1,2若f(f(0))=4a,则实数a= 2 .
解析:f(0)=2,f(f(0))=f(2)=4+2a=4a,所以a=2
?log3x,x?012. 已知函数f(x)??x,则f(f())?
9?2,x?0A.4
B.
1 4 C.-4 D-
1 4【答案】B
1111【解析】根据分段函数可得f()?log3??2,则f(f())?f(?2)?2?2?,
9994所以B正确.
3.定义在R上的函数f(x)满足f(x)= ??log2(1?x),x?0,则(f2009)的值为( )
?f(x?1)?f(x?2),x?0A.-1 B. 0 C.1 D. 2
【解析】:由已知得f(?1)?log22?1,f(0)?0,f(1)?f(0)?f(?1)??1,
f(2)?f(1)?f(0)??1,f(3)?f(2)?f(1)??1?(?1)?0,
f(4)?f(3)?f(2)?0?(?1)?1,f(5)?f(4)?f(3)?1,f(6)?f(5)?f(4)?0,
所以函数f(x)的值以6为周期重复性出现.,所
分段函数与复合函数
分段函数
1.已知函数f(x)=??3x?2,x?1,?x?ax,x?1,2若f(f(0))=4a,则实数a= 2 .
解析:f(0)=2,f(f(0))=f(2)=4+2a=4a,所以a=2
?log3x,x?012. 已知函数f(x)??x,则f(f())?
9?2,x?0A.4
B.
1 4 C.-4 D-
1 4【答案】B
1111【解析】根据分段函数可得f()?log3??2,则f(f())?f(?2)?2?2?,
9994所以B正确.
3.定义在R上的函数f(x)满足f(x)= ??log2(1?x),x?0,则(f2009)的值为( )
?f(x?1)?f(x?2),x?0A.-1 B. 0 C.1 D. 2
【解析】:由已知得f(?1)?log22?1,f(0)?0,f(1)?f(0)?f(?1)??1,
f(2)?f(1)?f(0)??1,f(3)?f(2)?f(1)??1?(?1)?0,
f(4)?f(3)?f(2)?0?(?1)?1,f(5)?f(4)?f(3)?1,f(6)?f(5)?f(4)?0,
所以函数f(x)的值以6为周期重复性出现.,所
MATLAB多元函数导数求极值或最优值
实验六 多元函数的极值
【实验目的】
1. 多元函数偏导数的求法。 2. 多元函数自由极值的求法 3. 多元函数条件极值的求法.
4. 学习掌握MATLAB软件有关的命令。
【实验内容】
求函数z?x?8xy?2y?3的极值点和极值
42【实验准备】
1.计算多元函数的自由极值
对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤:
步骤1.定义多元函数z?f(x,y)
步骤2.求解正规方程fx(x,y)?0,fy(x,y)?0,得到驻点
?2z?2z?2z步骤3.对于每一个驻点(x0,y0),求出二阶偏导数A?,B?,C?2, 2?x?y?x?y步骤4. 对于每一个驻点(x0,y0),计算判别式AC?B,如果AC?B?0,则该驻点是极值点,当A?0为极小值, A?0为极大值;,如果AC?B?0,判别法失效,需进一步判断; 如果AC?B?0,则该驻点不是极值点.
2.计算二元函数在区域D内的最大值和最小值
设函数z?f(x,y)在有界区域D上连续,则f(x,y)在D上必定有最大值和最小值。求f(x,y)在D上的最大值和最小值的一般步骤为:
步骤1. 计算f(x,y)在D内所有驻点处的函数值;
步骤2. 计算f(x,
3.3.2函数的极值与导数
3.3.2函数的极值与导数
班别:____ 组别:____ 姓名:____ 评价:____
【学习目标】
1.了解函数在某点取得极值的必要条件和充分条件.
2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).
☆预习案☆ (约 分钟)
依据课前预习案通读教材,进行知识梳理,完成预习自测题目,并将预习中不能解决的问题填写到后面“我的疑惑”处。
【知识要点】 (阅读课文93—96页,完成导学案) 1.极值点与极值 (1)极小值与极小值点
如图,若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0 , 而且在点x=a附近的左侧 ,右侧 ,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)极大值与极大值点
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大 , f′(b)=0 ,而且在点x= b附近的左侧 ,右侧 ,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值。极小值点、极大值点统称为 ,极大值和极小值统称为
3.3.2函数的极值与导数
3.3.2函数的极值与导数
班别:____ 组别:____ 姓名:____ 评价:____
【学习目标】
1.了解函数在某点取得极值的必要条件和充分条件.
2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).
☆预习案☆ (约 分钟)
依据课前预习案通读教材,进行知识梳理,完成预习自测题目,并将预习中不能解决的问题填写到后面“我的疑惑”处。
【知识要点】 (阅读课文93—96页,完成导学案) 1.极值点与极值 (1)极小值与极小值点
如图,若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0 , 而且在点x=a附近的左侧 ,右侧 ,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)极大值与极大值点
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大 , f′(b)=0 ,而且在点x= b附近的左侧 ,右侧 ,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值。极小值点、极大值点统称为 ,极大值和极小值统称为