直线与平面垂直的知识点
“直线与平面垂直的知识点”相关的资料有哪些?“直线与平面垂直的知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“直线与平面垂直的知识点”相关范文大全或资料大全,欢迎大家分享。
空间点直线平面知识点
空间点、直线、平面的位置关系
(1)平面
① 平面的概念: A.描述性说明; B.平面是无限伸展的;
② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);
也可以用两个相对顶点的字母来表示,如平面BC。
③ 点与平面的关系:点A在平面 内,记作A ;点A不在平面 内,记作A 点与直线的关系:点A的直线l上,记作:A∈l; 点A在直线l外,记作A l; 直线与平面的关系:直线l在平面α内,记作l α;直线l不在平面α内,记作l α。
(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)
应用:检验桌面是否平; 判断直线是否在平面内
用符号语言表示公理1:A l,B l,A ,B l
(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一
平面。
公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据
(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:P A B
2.3.3直线与平面垂直的性质
必修2 教案
学校:临清实验高中 学科:数学 编写人:贾红国 审稿人:邢玉兰 王桂强
2.3.3直线与平面垂直的性质
【教学目标】
(1)培养学生的几何直观能力和知识的应用能力,使他们在直观感知的基础上进一步学会证明. (2)掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。 (3)掌握等价转化思想在解决问题中的运用. 【教学重难点】
重点:直线和平面垂直的性质定理和推论的内容和简单应用。
难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。 【教学过程】 (一) 复习引入
师:判断直线和平面垂直的方法有几种?
师:各判定方法在何种条件或情形下方可熟练运用?
师:在空间,过一点,有几条直线与已知平面垂直?过一点,有几个平面与已知直线垂直? 判断下列命题是否正确:
1、在平面中,垂直于同一直线的两条直线互相平行。 2、 在空间中,垂直于同一直线的两条直线互相平行。 3、 垂直于同一平面的两直线互相平行。 4、 垂直于同一直线的两平面互相平行。
师:直线和平面是否垂直的判定方法上节课我们已研究过,这节课我们来共同探讨直线和平面如果垂直,
则其应具备的性质是什么? (二) 创设情景
如图,长方体ABCD—A′B′C′D′中,棱A A′、B B′、C
2.3.3直线与平面垂直的性质
必修2 教案
学校:临清实验高中 学科:数学 编写人:贾红国 审稿人:邢玉兰 王桂强
2.3.3直线与平面垂直的性质
【教学目标】
(1)培养学生的几何直观能力和知识的应用能力,使他们在直观感知的基础上进一步学会证明. (2)掌握直线和平面垂直的性质定理和推论的内容、推导和简单应用。 (3)掌握等价转化思想在解决问题中的运用. 【教学重难点】
重点:直线和平面垂直的性质定理和推论的内容和简单应用。
难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。 【教学过程】 (一) 复习引入
师:判断直线和平面垂直的方法有几种?
师:各判定方法在何种条件或情形下方可熟练运用?
师:在空间,过一点,有几条直线与已知平面垂直?过一点,有几个平面与已知直线垂直? 判断下列命题是否正确:
1、在平面中,垂直于同一直线的两条直线互相平行。 2、 在空间中,垂直于同一直线的两条直线互相平行。 3、 垂直于同一平面的两直线互相平行。 4、 垂直于同一直线的两平面互相平行。
师:直线和平面是否垂直的判定方法上节课我们已研究过,这节课我们来共同探讨直线和平面如果垂直,
则其应具备的性质是什么? (二) 创设情景
如图,长方体ABCD—A′B′C′D′中,棱A A′、B B′、C
直线与平面垂直的判定(郑佳义)
直线与平面垂直的判定 郑佳义
一、教学目标 知识目标:
(1)、理解直线与平面垂直的定义;
(2)、能应用线面垂直的定义及线面垂直的判定定理解题. 能力目标:
培养学生的几何直观能力,使他们在直观感知、操作确认的基础上培养学生类比、分析、归纳、猜想、概括、论证等逻辑思维能力,进一步培养学生的空间观念.
情感目标:
(1)、激发学生的学习兴趣,培养学生不断发现、探索新知的精神; (2)、渗透事物间相互转化和理论联系实际的辩证唯物主义观点;
(3)、引导学生提出问题、分析问题和解决问题,培养学生勇于探索的思维品质。 (4)、让学生亲身经历数学概念的形成过程,体验探索的乐趣,增强学习数学的兴趣,培养探索新知识的能力以及勇于创新的勇气.
二、教学重点与难点
直线与平面垂直的定义及判定定理的应用.
三、教学方法 启发探究式. 四、教学手段 多媒体,三角板. 五、教学流程
从线面垂直的实际背景引入课题?构建线面垂直的定义->探究线面垂直的判定定理->直线与平面垂直的判定定理的应用->课堂小结
五、教学过
直线与平面垂直的判定(郑佳义)
直线与平面垂直的判定 郑佳义
一、教学目标 知识目标:
(1)、理解直线与平面垂直的定义;
(2)、能应用线面垂直的定义及线面垂直的判定定理解题. 能力目标:
培养学生的几何直观能力,使他们在直观感知、操作确认的基础上培养学生类比、分析、归纳、猜想、概括、论证等逻辑思维能力,进一步培养学生的空间观念.
情感目标:
(1)、激发学生的学习兴趣,培养学生不断发现、探索新知的精神; (2)、渗透事物间相互转化和理论联系实际的辩证唯物主义观点;
(3)、引导学生提出问题、分析问题和解决问题,培养学生勇于探索的思维品质。 (4)、让学生亲身经历数学概念的形成过程,体验探索的乐趣,增强学习数学的兴趣,培养探索新知识的能力以及勇于创新的勇气.
二、教学重点与难点
直线与平面垂直的定义及判定定理的应用.
三、教学方法 启发探究式. 四、教学手段 多媒体,三角板. 五、教学流程
从线面垂直的实际背景引入课题?构建线面垂直的定义->探究线面垂直的判定定理->直线与平面垂直的判定定理的应用->课堂小结
五、教学过
必修2教案2.3.1直线与平面垂直的判定
必修2教案2.3.1直线与平面垂直的判定
§2.3.1直线与平面垂直的判定
一、教学目标
1、知识与技能
(1)使学生掌握直线和平面垂直的定义及判定定理;
(2)使学生掌握判定直线和平面垂直的方法;
(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
2、过程与方法
(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;
(2)探究判定直线与平面垂直的方法。
3、情态与价值
培养学生学会从“感性认识”到“理性认识”过程中获取新知。
二、教学重点、难点
直线与平面垂直的定义和判定定理的探究。
三、教学设计
(一)创设情景,揭示课题
1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。
2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。
(二)研探新知
1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。然后教师引导学生用“平面化”的思想来思考问题:从直线与直
2.3直线与方程知识点
必修2第三章 直线与方程
3.1直线的倾斜角和斜率
3.1倾斜角和斜率
1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.
2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.
3、直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα
⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;
⑵当直线l与x轴垂直时, α= 90°, k 不存在.
由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.
4、 直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:
斜率公式: k=y2-y1/x2-x1
3.1.2两条直线的平行与垂直
1
、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意: 上面的等价是在两条直线不
(6)必修2 2.3直线与平面垂直的判定
必修2 2.3直线与平面垂直的判定
知识结构 姓名_____________
1. 直线与平面垂直的定义:如果 , 就说直线l与平面?互相垂直,记作 。直线l叫做平面?的 ,平面?叫做直线l的 。
2.直线与平面垂直的判定定理:
文字语言: . 图形语言: 符号语言:
3. 直线与平面所成的角:
叫做直线与平面所成的角.
练习
一、 选择题:
1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A.平行 B.垂直 C.相交不垂直 D.不确定
《直线与平面垂直的判定定理》教学设计
龙源期刊网 http://www.qikan.com.cn
《直线与平面垂直的判定定理》教学设计
作者:黄章盛
来源:《学校教育研究》2017年第09期
一、对本节课教与学的认识 1.对本节的教学分析
新课标指出,以空间几何的定义和公理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。对于判断定理不要求证明,但对于性质定理要求证明。这样的要求是体现出立体几何初步以直观感知和操作确认为重点,强调建立和提升学生的空间想象力和几何直观能力,而对于推理论证能力,需要根据学生的实际情况进行适度合理的要求。线面垂直关系的模型在我们所生活的环境中普遍存在,因此,在立体几何初步中,垂直关系必然成为线面关系中的核心内容之一。 2.学情分析
学生生活的空间存在着丰富的垂直关系,因此学生对直线与平面的垂直关系并不陌生,只不过学生头脑中的对直线与平面垂直的理解还不能数学概念上的理解。 3.教学目标分析 知识与技能
(1)理解直线和平面垂直判定定理的含义; (2)会用直线和平面垂直判定
直线与方程知识点总结和练习
直线与方程的知识点
倾斜角与斜率
1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l的倾斜角 的范围是0 . 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即k tan . 如果知道直线上两点
y y1
. 特别地是,当x1 x2,y1 y2时,直线与x轴垂直,斜率kP(x1,y1),P(x2,y2),则有斜率公式k 2
x2 x1不存在;当x1 x2,y1 y2时,直线与y轴垂直,斜率k=0.
注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合. 当α=90°时,斜率k=0;当0 90 时,斜率k 0,随着α的增大,斜率k也增大;当90 180 时,斜率k 0,随着α的增大,斜率k也增大. 这样,可以求解倾斜角α的范围与斜率k取值范围的一些对应问题.
两条直线平行与垂直的判定
1. 对于两条不重合的直线l1 、l2,其斜率分别为k1、k2,有:
(1)l1//l2 k1 k2;(2)l1 l2 k1 k2 1.
2. 特例:两条直线中一条斜率不存在时,另一条斜率