因式分解竞赛题及答案
“因式分解竞赛题及答案”相关的资料有哪些?“因式分解竞赛题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“因式分解竞赛题及答案”相关范文大全或资料大全,欢迎大家分享。
因式分解竞赛题
1.分解因式(a+b+c)5-a5-b5-c5
2.分解因式a3(b-c)+b3(c-a)+c3(a-b)
3.分解因式x2(y+z)+y2(z+x)+z2(x+y)-(x3+y3+z3)-2xyz
4.分解因式
(1)(x+y)(y+z)(z+x)+xyz
(2)(x+y+z)3-(y+z-x)3-(z+x-y)3-(x+y-z)3
(3)(a+b+c)(ab+bc+ca)-abc
(4)(y-z)5+(z-x)5+(x-y)5
5.求证:2x+3是2x4-5x3-10x2+15x+18的因式
6.把多项式4x4-4x3+5x2-2x+1写成一个多项式的完全平方式
7.分解因式x4+x3+x2+2
8.若a是自然数,且a4-4a3+15a2-30a+27的值是一个质数,求这个质数
9.分解因式x4-x3+4x2+3x+5
10.分解因式3x2+5xy-2y2+x+9y-4
11.求证:有无穷多个正整数a,使得数z=n4+a对于任何正整数n均为合数
12.分解因式
(1)x4+x3-3x2-4x-4
(2)x4+y4+(x+y)4
(3)x3(a+1)-
因式分解--提高题
周末练习
班级 姓名
2223
1.若△ABC三边分别是a,b,c,且满足(b-c)(a+b)=bc-c, 试判断△ABC的形状.
变式训练:
2.已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
3.已知a,b,c为△ABC的三边长,且2a2+2b2+2c2-2ab-2ac-2bc=0,试判定△ABC的形状.
4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数” (1)36和2012这两个数是“神秘数”吗?为什么?
(2)设两个连续偶数为2k-2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?
5.如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.如果搭建正三角形和正方形共用了176根火柴棍,并且正三角形的个数比正方形的个数多12个,求搭建正三角形和正方形的个数分别是多少?
变式训练
初中数学竞赛-因式分解(1)
初中数学竞赛专题培训 第一讲:因式分解(一)
多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法 =(a-b)+2c(a-b)+c =(a-b+c).
本小题可以稍加变形,直接使用公式(5),解法如下: 原式=a+(-b)+c+2(-b)c+2ca+2a(-b) =(a-b+c)
(4)原式=(a-ab)+(ab-b) 7
52
25
7
2
2
2
22
22
和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2
-b2
=(a+b)(a-b); (2)a2
±2ab+b2
=(a±b)2
; (3)a3
+b3
=(a+b)(a2
-ab+b2
); (4)a3
-b3
=(a-b)(a2
001因式分解
高一数学学案 序号 001 学生
第1课 因式分解
一、基本知识点回顾
1、把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式。 例:下列各式从左到右的变形中,是因式分解的为( A、xy2(x?1)?x2y2?xy2
)
B、x2?9?(x?3)(x?3)
D、ax?bx?c?x(a?b)?c
C、x2?1?y2?(x?1)(x?1)?y2
2、我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
例:①5x2?x2y的公因式为 ;②9x3y2?12x2y2?6xy3的公因式为
3、分解因式的平方差公式: 分解因式的完全平方公式: 注意:
1、 因式分解的方法:提取公因式法;公式法
2、 提取公因式法因式分解的思路:一看系数(数字)找它们的最大公约数,二看字母找它们相同
因式分解的概念及因式分解方法
因式分解的概念及因式分解方法(一)
教学目的:
使学生能够掌握因式分解的概念以及初步学会因式分解。
教学重点:
1. 应用定义区别因式分解与多项式相乘 2. 提公因式法的正确掌握与灵活应用
教学难点:
能够正确找出公因式
教学过程: 计算
(1)5a(b?3c)?________________
1???s?t??2? (2)?________________
(3)(5m?3n)(5m?3n)?_____________ (4)(x?3)(x?5)?___________________ 答案:(1)5ab?15ac
21s2?st?t24 (2)
(3)25m?9n (4)x?2x?15
1. 因式分解的定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分
解,也叫做把这个多项式分解因式。 注意:
(1)因式分解的对象是“一个多项式”,掌握这一要点对判断、把握一种变形是否是因式分解提供一定的帮助。
(2)因式分解是一种恒等的变形
(3)因式分解的结果是“整式的积”的形式。
例1. 判断下列各
因式分解技巧
因式分解技巧
因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.
※ 多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法等其他方法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。
一、 提公因法
①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项
因式分解教案
目录
第一篇:因式分解教案第二篇:因式分解教案第三篇:因式分解教案示例第四篇:初一因式分解教案第五篇:第1课时1.1多项式的因式分解教案湘教版1更多相关范文正文
第一篇:因式分解教案
乘法公式与因式分解的运用 知识回顾
平方差公式 :(a?b)(a?b)?a2?b2
(a?b)2?a2?2ab?b2
2 完全平方公式 :
其他常用公式 :(a?b)?a?2ab?b22
a3?b3?(a?b)(a2?ab?b2)a3?b3?(a?b)(a2?ab?b2)
(a?b?c)2?a2?b2?c2?2ab?2ac?2bc
第二篇:因式分解教案
因式分解——提取公因式法
【教学目标】
1、 理解因式分解的意义,知道因式分解和整式乘法的互逆关系
2、 理解多项式“公因式”和“最大公因式”的概念,并会确定多项式的最大公因式
3、 初步掌握如何用提取公因式法来分解因式
【教学重点、难点】
1、 正确找出多项式各项的最大公因式
2、 正确找出多项式提取公因式后剩下的因式
3、 知道因式分解和整式乘法互为逆运算
【教学过程】
一、复习旧知、引入新知
1、 计算下列各式:2、你能把下列各式写成两式积的形式吗? a(b+c)=_____________ab+ac=_
因式分解学案初稿
1.1多项式的因式分解
【学习目标】 课标要求
理解因式分解的概念,体会类比思想在数学学习中的应用。 目标达成
1、能理解因式分解的概念。
2、了解因式分解在解决其他数学问题中的桥梁作用。 3、在学习过程中培养学生的观察能力和探究能力。 【自主学习】 一、学习新知
21、6可以怎样分解?什么是因数?x?4等于x?2乘以哪个多项式?什么叫因式?
2、什么叫多项式的因式分解?说一说因式分解的概念应注意哪些方面?
3、因式分解与整式乘法有什么关系?
4、什么叫质数(素数)?什么叫公约数、最大公约数?怎样寻找几个整数的最大公约数?
二、我的疑问
【合作探究】
1、下列分解质因数,不正确的是( )
A、12?2?2?3 B、30?2?3?5 C、100?4?25 D、28?2?2?7 2、指出8与12的最大公因数( )
A、 12 B、8 C、2 D、4
3、下列等式从左边到右边的变形中,是因式分解的有( )
22(1)4abc?4a?b?c (2)(a?b)(a?b)?a?b
33
(3
因式分解说课稿
说 课 稿
(北师大版)八年级下册第四章第一节 一、说教材
1.教材的地位和作用
今天我说课的内容是北师大版八年级数学下册第四章《因式分解》第一节课的内容。因式分解是代数式的一种重要恒等变形,它在分解因数与整式乘法的基础上来讨论因式分解的概念,是学习分式的基础,且在简便运算、解方程及代数式的恒等变形中有广泛的应用。就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。它是通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下的作用。
二、说教学目标
根据因式分解这一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:
1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系
2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力
教学重点:理解因式分解的意义,并识别分解因式与整式乘法的关系
教学难点:通过观察,归纳分解因式与整式乘法的关系
三、说教学方法
就本节
整式的乘除及因式分解
整式的乘除与因式分解
【学习目标】
1.掌握与整式有关的概念;
2.掌握同底数幂、幂的乘法法则,同底数幂的除法法则,积的乘方法则;
3.掌握单项式、多项式的相关计算;
4.掌握乘法公式:平方差公式,完全平方公式。
5..掌握因式分解的常用方法。
【知识点总结】
1、单项式与多项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 2
2-的 系数为2-,次数为4,单独的一个非零数的次数是0。 几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2
a 、a
b 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。 2、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。
3、多项式一般按字母的升(降)幂排列:
如:1223
223--+-y xy y x x
按x 的升幂排列:3223221x y x xy y +-+--
按x 的降幂排列:1223223--+-y xy