常用积分公式24个
“常用积分公式24个”相关的资料有哪些?“常用积分公式24个”相关的范文有哪些?怎么写?下面是小编为您精心整理的“常用积分公式24个”相关范文大全或资料大全,欢迎大家分享。
常用积分公式
常 用 积 分 公 式
(一)含有ax?b的积分(a?0) 1.
dx1=?ax?balnax?b?C
2.(ax?b)dx=
??1(ax?b)??1?C(???1)
a(??1)3.
x1dx(ax?b?blnax?b)?C =?ax?ba2x21?1?dx=3?(ax?b)2?2b(ax?b)?b2lnax?b??C 4.?ax?ba?2?5.
dx1ax?b=??x(ax?b)blnx?C
6.
?dx1aax?b=??ln?C 22x(ax?b)bxbx7.
1bx(lnax?b?)?C dx=?(ax?b)2a2ax?b1b2x2)?C 8.?dx=3(ax?b?2blnax?b?aax?b(ax?b)29.
?dx11ax?b=?ln?C
x(ax?b)2b(ax?b)b2x(二)含有ax?b的积分
23(ax?b)?C ?3a2(3ax?2b)(ax?b)3?C 11.?xax?bdx=215a22(15a2x2?12abx?8b2)(ax?b)3?C 12.?xax?bdx=3105a10.
ax?bdx=13.
?2xdx=2(ax?2b)ax?b?C
3aax?b1
14.
?2x2(3a2x2?4abx?8b2)ax?b?C dx=31
常用的求导积分公式及解法
常用的求导积分公式及解法
常用的求导积分公式及解法 1.基本求导公式
⑴ (C) 0(C为常数)⑵ (xn) nxn 1;一般地,(x ) x 1。 特别地:(x) 1,(x2) 2x,()
1x
11
,。 (x) 2
x2x
⑶ (ex) ex;一般地,(ax) axlna (a 0,a 1)。 ⑷ (lnx)
11
(a 0,a 1)。 ;一般地,(logax)
xxlna
2.求导法则 ⑴ 四则运算法则
设f(x),g(x)均在点x可导,则有:(Ⅰ)(f(x) g(x)) f (x) g (x); (Ⅱ)(f(x)g(x)) f (x)g(x) f(x)g (x),特别(Cf(x)) Cf (x)(C为常数); (Ⅲ)(
f(x)f (x)g(x) f(x)g (x)1g (x)
,特别。 ) , (g(x) 0)() 22
g(x)g(x)g(x)g(x)
3.微分 函数y f(x)在点x处的微分:dy y dx f (x)dx 4、 常用的不定积分公式
1 1x2x32
xdx 1x C ( 1), dx x c, xdx 2 c, xdx 3(1) ;
4x3
xdx c 4
1axxxx
C (a 0,
积分公式
2.基本积分公式表
(1)∫0dx=C (2)(3)(4)(5)
=ln|x|+C
(m≠-1,x>0) (a>0,a≠1)
(6)∫cosxdx=sinx+C (7)∫sinxdx=-cosx+C (8)∫sec2xdx=tanx+C (9)∫csc2xdx=-cotx+C (10)∫secxtanxdx=secx+C (11)∫cscxcotxdx=-cscx+C (12)(13)注.(1)(2)
=arcsinx+C =arctanx+C 不是
在m=-1的特例.
=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.
事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =(3)要特别注意积分.
下面我们要学习不定积分的计算方法,首先是四则运算.
3.不定积分的四则运算
根据微分运算公式 d(f(x)?g(x))=df(x)?dg(x)
与
.
的区别:前者是幂函数的积分,后者是指数函数的
d(kf(x))=kdf(x)
我们得不定积分的线性运算公式
(1)∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx (2)∫kf(x)dx=k∫f(x)dx,k是非零常数.
现在可利用这两个公式与基本积分公式来计算简单不定积分.
高等数学常用导数积分公式查询表好
08070141常用导数和积分公式
导数公式:
? (1) (C)?0 ? (3) (sinx)?cosx
???1?(x)??x (2)
? (4) (cosx)??sinx
(5)
(tanx)??sec2x (7) (secx)??secxtanx
(9)
(ax)??axlna (log1 (11)
ax)??xlna
(arcsinx)??1 (13)
1?x2
(arctanx)??1 (15)
1?x2
(cotx)???csc2x (cscx)???cscxcotx
(ex)??ex
(lnx)??1x,
(arccosx)???11?x2(arccotx)???11?x2
(6)
(8) (10) (12)
(14)
(16)
08070141常用导数和积分公式
基本积分表
?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx
微积分-积分公式定理集锦
各种积分公式,公式大概分为四类,
北京理工大学
微积分-积分定理集锦
常用积分公式 定理
程功 2010/12/22
各种积分公式,公式大概分为四类,
定理
1.积分存在定理
1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.
2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。
2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的
a
a
a
bbb
情况)。
性质2. kf(x)dx k f(x)dx k为常数
a
a
bb
假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)
a
a
c
bcb
性质4: 1 dx badx b a
a
b
性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)
a
b
推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)
a
a
bb
推论(2):
b
a
f()xdx fx a b
a
b
性质6:设M及m分别是函数f x 上的最大值与最小值,则
m(b a) f(x)dx M(b a)
a
b
3.定积分中值定理
如果函数f x
不定积分基本公式
不定积分基本公式
第二节 不定积分的基本公式和直接积分法(Basic Formula of Undefined
Integral and Direct Integral)
课 题:1. 不定积分的基本公式 2. 不定积分的直接积分法 课堂类型:讲授 教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。 教学重点:不定积分的基本公式 教学难点: 直接积分法 教 具:多媒体课件 教学方法: 教学内容:
一、不定积分的基本公式
由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。 导数的基本公式 不定积分的基本公式
(C) 0x 1
(x 1)
1 x (ex) ex(ax) axlna1x
(sinx) cosx(cosx) sinx(lnx) (tanx) sec2x(cotx) csc2x(secx) secxtanx(cscx) cscxcotx(arcsinx)
1
(arctanx)
1 x2
(arccosx) 1
(arccotx)
1 x21
(logax)
xlna
0dx C dx x C
x 1
xdx 1
所有微积分公式《全》
所有微积分公式《全》
·两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ
高考必备:高中数学常用公式及常用结论(共203个)
高考必备:高中数学常用公式及常用结论(共203个)
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2–1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax?bx?c(a?0); (2)顶点式f(x)?a(x?h)?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
22nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?.
水利常用公式
14、水利常用专业计算公式
一、枢纽建筑物计算
1、进水闸进水流量计算: Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 2、堰流过水流量计算: Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 δ—堰流淹没系数 3、挖深式消力池校核长度计算: Lsj=Ls+βLj
1
式中:Lsj —消力池长度(m)
Ls —消力池斜坡段投影长度(m) β —水跃长度校正系数 Lj —水跃长度(m) 4、挖深式消力池深度按下式校核: d= hc hs △Z Ls+β Lj 式中:d —消力池深度 (m) hc—水跃跃后水深 (m) hs—出池河床水深 (m) △Z—出池落差 (m) 5、护坦式海漫长度计算 Lp=Ks(q(△H)1/2)1/2 式中:Lp —海漫长度 (m)
2
Ks —海漫长度计算系数
q —消力池末端单宽流量(m3
/s) △H —下泄时上下游水位差(m) 6、稳定河宽阿尔图宁公式: B=AQ0.5/J0.2
式中:B —稳定河宽(m) A —河宽系数取1.5(m2
) Q —造床流量(m3
/s)
Excel常用公式和技巧公式
常用函数公式及技巧搜集
【身份证信息提取】
从身份证号码中提取出生年月日
=IF(LEN(A2)=15,\\
从身份证号码中提取出性别
=IF(MOD(MID(A1,15,3),2),\男\女\
从身份证号码中进行年龄判断
以2006年10月31日为基准日,按按身份证计算年龄(周岁)的公式
=DATEDIF(TEXT(MID(A1,7,6+(LEN(A1)=18)*2),\
按身份证号分男女年龄段
按身份证号分男女年龄段,身份证号在K列,年龄段在J列(身份证号为18位) 男性16周岁以下为 1 男性16周岁(含16周岁)以上至50周岁为 2 男性50周岁(含50周岁)以上至60周岁为 3 男性60周岁(含60周岁)以上为 4 女性16周岁以下为 1 女性16周岁(含16周岁)以上至45周岁为 2 女性45周岁(含45周岁)以上至55周岁为 3 女性55周岁(含55周岁)以上为 4
=MATCH(DATEDIF(DATE(MID(K1,7,4),MID(K1,11,2),MID(K1,13,2)),TODAY(),\,50,60}-{0,0,5,5}*ISEVEN