常用积分公式24个

“常用积分公式24个”相关的资料有哪些?“常用积分公式24个”相关的范文有哪些?怎么写?下面是小编为您精心整理的“常用积分公式24个”相关范文大全或资料大全,欢迎大家分享。

常用积分公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

常 用 积 分 公 式

(一)含有ax?b的积分(a?0) 1.

dx1=?ax?balnax?b?C

2.(ax?b)dx=

??1(ax?b)??1?C(???1)

a(??1)3.

x1dx(ax?b?blnax?b)?C =?ax?ba2x21?1?dx=3?(ax?b)2?2b(ax?b)?b2lnax?b??C 4.?ax?ba?2?5.

dx1ax?b=??x(ax?b)blnx?C

6.

?dx1aax?b=??ln?C 22x(ax?b)bxbx7.

1bx(lnax?b?)?C dx=?(ax?b)2a2ax?b1b2x2)?C 8.?dx=3(ax?b?2blnax?b?aax?b(ax?b)29.

?dx11ax?b=?ln?C

x(ax?b)2b(ax?b)b2x(二)含有ax?b的积分

23(ax?b)?C ?3a2(3ax?2b)(ax?b)3?C 11.?xax?bdx=215a22(15a2x2?12abx?8b2)(ax?b)3?C 12.?xax?bdx=3105a10.

ax?bdx=13.

?2xdx=2(ax?2b)ax?b?C

3aax?b1

14.

?2x2(3a2x2?4abx?8b2)ax?b?C dx=31

常用的求导积分公式及解法

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

常用的求导积分公式及解法

常用的求导积分公式及解法 1.基本求导公式

⑴ (C) 0(C为常数)⑵ (xn) nxn 1;一般地,(x ) x 1。 特别地:(x) 1,(x2) 2x,()

1x

11

,。 (x) 2

x2x

⑶ (ex) ex;一般地,(ax) axlna (a 0,a 1)。 ⑷ (lnx)

11

(a 0,a 1)。 ;一般地,(logax)

xxlna

2.求导法则 ⑴ 四则运算法则

设f(x),g(x)均在点x可导,则有:(Ⅰ)(f(x) g(x)) f (x) g (x); (Ⅱ)(f(x)g(x)) f (x)g(x) f(x)g (x),特别(Cf(x)) Cf (x)(C为常数); (Ⅲ)(

f(x)f (x)g(x) f(x)g (x)1g (x)

,特别。 ) , (g(x) 0)() 22

g(x)g(x)g(x)g(x)

3.微分 函数y f(x)在点x处的微分:dy y dx f (x)dx 4、 常用的不定积分公式

1 1x2x32

xdx 1x C ( 1), dx x c, xdx 2 c, xdx 3(1) ;

4x3

xdx c 4

1axxxx

C (a 0,

积分公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

2.基本积分公式表

(1)∫0dx=C (2)(3)(4)(5)

=ln|x|+C

(m≠-1,x>0) (a>0,a≠1)

(6)∫cosxdx=sinx+C (7)∫sinxdx=-cosx+C (8)∫sec2xdx=tanx+C (9)∫csc2xdx=-cotx+C (10)∫secxtanxdx=secx+C (11)∫cscxcotxdx=-cscx+C (12)(13)注.(1)(2)

=arcsinx+C =arctanx+C 不是

在m=-1的特例.

=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.

事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =(3)要特别注意积分.

下面我们要学习不定积分的计算方法,首先是四则运算.

3.不定积分的四则运算

根据微分运算公式 d(f(x)?g(x))=df(x)?dg(x)

.

的区别:前者是幂函数的积分,后者是指数函数的

d(kf(x))=kdf(x)

我们得不定积分的线性运算公式

(1)∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx (2)∫kf(x)dx=k∫f(x)dx,k是非零常数.

现在可利用这两个公式与基本积分公式来计算简单不定积分.

高等数学常用导数积分公式查询表好

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

08070141常用导数和积分公式

导数公式:

? (1) (C)?0 ? (3) (sinx)?cosx

???1?(x)??x (2)

? (4) (cosx)??sinx

(5)

(tanx)??sec2x (7) (secx)??secxtanx

(9)

(ax)??axlna (log1 (11)

ax)??xlna

(arcsinx)??1 (13)

1?x2

(arctanx)??1 (15)

1?x2

(cotx)???csc2x (cscx)???cscxcotx

(ex)??ex

(lnx)??1x,

(arccosx)???11?x2(arccotx)???11?x2

(6)

(8) (10) (12)

(14)

(16)

08070141常用导数和积分公式

基本积分表

?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx

微积分-积分公式定理集锦

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

各种积分公式,公式大概分为四类,

北京理工大学

微积分-积分定理集锦

常用积分公式 定理

程功 2010/12/22

各种积分公式,公式大概分为四类,

定理

1.积分存在定理

1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.

2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。

2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的

a

a

a

bbb

情况)。

性质2. kf(x)dx k f(x)dx k为常数

a

a

bb

假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)

a

a

c

bcb

性质4: 1 dx badx b a

a

b

性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)

a

b

推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)

a

a

bb

推论(2):

b

a

f()xdx fx a b

a

b

性质6:设M及m分别是函数f x 上的最大值与最小值,则

m(b a) f(x)dx M(b a)

a

b

3.定积分中值定理

如果函数f x

不定积分基本公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

不定积分基本公式

第二节 不定积分的基本公式和直接积分法(Basic Formula of Undefined

Integral and Direct Integral)

课 题:1. 不定积分的基本公式 2. 不定积分的直接积分法 课堂类型:讲授 教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。 教学重点:不定积分的基本公式 教学难点: 直接积分法 教 具:多媒体课件 教学方法: 教学内容:

一、不定积分的基本公式

由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。 导数的基本公式 不定积分的基本公式

(C) 0x 1

(x 1)

1 x (ex) ex(ax) axlna1x

(sinx) cosx(cosx) sinx(lnx) (tanx) sec2x(cotx) csc2x(secx) secxtanx(cscx) cscxcotx(arcsinx)

1

(arctanx)

1 x2

(arccosx) 1

(arccotx)

1 x21

(logax)

xlna

0dx C dx x C

x 1

xdx 1

所有微积分公式《全》

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

所有微积分公式《全》



·两角和与差的三角函数

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  ·积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ

高考必备:高中数学常用公式及常用结论(共203个)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高考必备:高中数学常用公式及常用结论(共203个)

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2–1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax?bx?c(a?0); (2)顶点式f(x)?a(x?h)?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

22nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?.

水利常用公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

14、水利常用专业计算公式

一、枢纽建筑物计算

1、进水闸进水流量计算: Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 2、堰流过水流量计算: Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 δ—堰流淹没系数 3、挖深式消力池校核长度计算: Lsj=Ls+βLj

1

式中:Lsj —消力池长度(m)

Ls —消力池斜坡段投影长度(m) β —水跃长度校正系数 Lj —水跃长度(m) 4、挖深式消力池深度按下式校核: d= hc hs △Z Ls+β Lj 式中:d —消力池深度 (m) hc—水跃跃后水深 (m) hs—出池河床水深 (m) △Z—出池落差 (m) 5、护坦式海漫长度计算 Lp=Ks(q(△H)1/2)1/2 式中:Lp —海漫长度 (m)

2

Ks —海漫长度计算系数

q —消力池末端单宽流量(m3

/s) △H —下泄时上下游水位差(m) 6、稳定河宽阿尔图宁公式: B=AQ0.5/J0.2

式中:B —稳定河宽(m) A —河宽系数取1.5(m2

) Q —造床流量(m3

/s)

Excel常用公式和技巧公式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

常用函数公式及技巧搜集

【身份证信息提取】

从身份证号码中提取出生年月日

=IF(LEN(A2)=15,\\

从身份证号码中提取出性别

=IF(MOD(MID(A1,15,3),2),\男\女\

从身份证号码中进行年龄判断

以2006年10月31日为基准日,按按身份证计算年龄(周岁)的公式

=DATEDIF(TEXT(MID(A1,7,6+(LEN(A1)=18)*2),\

按身份证号分男女年龄段

按身份证号分男女年龄段,身份证号在K列,年龄段在J列(身份证号为18位) 男性16周岁以下为 1 男性16周岁(含16周岁)以上至50周岁为 2 男性50周岁(含50周岁)以上至60周岁为 3 男性60周岁(含60周岁)以上为 4 女性16周岁以下为 1 女性16周岁(含16周岁)以上至45周岁为 2 女性45周岁(含45周岁)以上至55周岁为 3 女性55周岁(含55周岁)以上为 4

=MATCH(DATEDIF(DATE(MID(K1,7,4),MID(K1,11,2),MID(K1,13,2)),TODAY(),\,50,60}-{0,0,5,5}*ISEVEN